• Title/Summary/Keyword: Tweet Topic

Search Result 13, Processing Time 0.022 seconds

Spatial Distribution Patterns of Twitter Data with Topic Modeling (토픽 모델링을 이용한 트위터 데이터의 공간 분포 패턴 분석)

  • Woo, Hyun Jee;Kim, Young Hoon
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.2
    • /
    • pp.376-387
    • /
    • 2017
  • This paper attempts to analyze the geographical characters of Twitter data and presents analysis potentials for social network analysis in geography. First, this paper suggests a methodology for a topic modeling-based approach in order to identify the geographical characteristics of tweets, including an analysis flow of Twitter data sets, tweet data collection and conversion, textural pre-processing and structural analysis, topic discovery, and interpretation of tweets' topics. GPS coordinates referencing tweets(geotweets) were extracted among sampled Twitter data sets because it contains the tweet place where it was created. This paper identifies a correlated relationship between some specific topics and local places in Jeju. This correlation is closely associated with some place names and local sites in Jeju Island. We assume it is the intention of tweeters to record their tweet places and to share and retweet with other tweeters in some cases. A surface density map shows the hotspots of tweets, detecting around some specific places and sites such as Jeju airport, sightseeing sites, and local places in Jeju Island. The hotspots show similar patterns of the floating population of Jeju, especially the thirty-year age group. In addition, a topic modeling algorithm is applied for the geographical topic discovery and comparison of the spatial patterns of tweets. Finally, this empirical analysis presents that Twitter data, as social network data, provide geographical significance, with topic modeling approach being useful in analyzing the textural features reflecting the geographical characteristics in large data sets of tweets.

  • PDF

A Survey on Automatic Twitter Event Summarization

  • Rudrapal, Dwijen;Das, Amitava;Bhattacharya, Baby
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.79-100
    • /
    • 2018
  • Twitter is one of the most popular social platforms for online users to share trendy information and views on any event. Twitter reports an event faster than any other medium and contains enormous information and views regarding an event. Consequently, Twitter topic summarization is one of the most convenient ways to get instant gist of any event. However, the information shared on Twitter is often full of nonstandard abbreviations, acronyms, out of vocabulary (OOV) words and with grammatical mistakes which create challenges to find reliable and useful information related to any event. Undoubtedly, Twitter event summarization is a challenging task where traditional text summarization methods do not work well. In last decade, various research works introduced different approaches for automatic Twitter topic summarization. The main aim of this survey work is to make a broad overview of promising summarization approaches on a Twitter topic. We also focus on automatic evaluation of summarization techniques by surveying recent evaluation methodologies. At the end of the survey, we emphasize on both current and future research challenges in this domain through a level of depth analysis of the most recent summarization approaches.

Predicting the Lifespan and Retweet Times of Tweets Based on Multiple Feature Analysis

  • Bae, Yongjin;Ryu, Pum-Mo;Kim, Hyunki
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.418-428
    • /
    • 2014
  • In social network services, such as Facebook, Google+, Twitter, and certain postings attract more people than others. In this paper, we propose a novel method for predicting the lifespan and retweet times of tweets, the latter being a proxy for measuring the popularity of a tweet. We extract information from retweet graphs, such as posting times; and social, local, and content features, so as to construct prediction knowledge bases. Tweets with a similar topic, retweet pattern, and properties are sequentially extracted from the knowledge base and then used to make a prediction. To evaluate the performance of our model, we collected tweets on Twitter from June 2012 to October 2012. We compared our model with conventional models according to the prediction goal. For the lifespan prediction of a tweet, our model can reduce the time tolerance of a tweet lifespan by about four hours, compared with conventional models. In terms of prediction of the retweet times, our model achieved a significantly outstanding precision of about 50%, which is much higher than two of the conventional models showing a precision of around 30% and 20%, respectively.

Company Name Discrimination in Tweets using Topic Signatures Extracted from News Corpus

  • Hong, Beomseok;Kim, Yanggon;Lee, Sang Ho
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2016
  • It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.

Changes in public recognition of parabens on twitter and the research status of parabens related to toothpaste (트위터(twitter)에서의 파라벤(parabens) 관련 대중의 인식 변화와 치약내 파라벤에 대한 연구 현황)

  • Oh, Hyo-Jung;Jeon, Jae-Gyu
    • Journal of Korean Academy of Oral Health
    • /
    • v.41 no.2
    • /
    • pp.154-161
    • /
    • 2017
  • Objectives: The purpose of this study was to investigate changes in public recognition of parabens on Twitter and the research status of parabens related to toothpaste. Methods: Tweet information between 2010 and October 2016 was collected by an automatic web crawler and examined according to tweet frequency, key words (2012-October 2016), and issue tweet detection analyses to reveal changes in public recognition of parabens on Twitter. To investigate the research status of parabens related to toothpaste, queries such as "paraben," "paraben and toxicity," "paraben and (toothpastes or dentifrices)," and "paraben and (toothpastes or dentifrices) and toxicity" were used. Results: The number of tweets concerning parabens sharply increased when parabens in toothpaste emerged as a social issue (October 2014), and decreased from 2015 onward. However, toothpaste and its related terms were continuously included in the core key words extracted from tweets from 2015. They were not included in key words before 2014, indicating that the emergence of parabens in toothpaste as a social issue plays an important role in public recognition of parabens in toothpaste. The issue tweet analysis also confirmed the change in public recognition of parabens in toothpaste. Despite the expansion of public recognition of parabens in toothpaste, there are only seven research articles on the topic in PubMed. Conclusions: The general public clearly recognized parabens in toothpaste after emergence of parabens in toothpaste as a social issue. Nevertheless, the scientific information on parabens in toothpaste is very limited, suggesting that the efforts of dental scientists are required to expand scientific knowledge related to parabens in oral hygiene measures.

A Reply Graph-based Social Mining Method with Topic Modeling (토픽 모델링을 이용한 댓글 그래프 기반 소셜 마이닝 기법)

  • Lee, Sang Yeon;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.640-645
    • /
    • 2014
  • Many people use social network services as to communicate, to share an information and to build social relationships between others on the Internet. Twitter is such a representative service, where millions of tweets are posted a day and a huge amount of data collection has been being accumulated. Social mining that extracts the meaningful information from the massive data has been intensively studied. Typically, Twitter easily can deliver and retweet the contents using the following-follower relationships. Topic modeling in tweet data is a good tool for issue tracking in social media. To overcome the restrictions of short contents in tweets, we introduce a notion of reply graph which is constructed as a graph structure of which nodes correspond to users and of which edges correspond to existence of reply and retweet messages between the users. The LDA topic model, which is a typical method of topic modeling, is ineffective for short textual data. This paper introduces a topic modeling method that uses reply graph to reduce the number of short documents and to improve the quality of mining results. The proposed model uses the LDA model as the topic modeling framework for tweet issue tracking. Some experimental results of the proposed method are presented for a collection of Twitter data of 7 days.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Twitter Sentiment Analysis for the Recent Trend Extracted from the Newspaper Article (신문기사로부터 추출한 최근동향에 대한 트위터 감성분석)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.731-738
    • /
    • 2013
  • We analyze public opinion via a sentiment analysis of tweets collected by using recent topic keywords extracted from newspaper articles. Newspaper articles collected within a certain period of time are clustered by using K-means algorithm and topic keywords for each cluster are extracted by using term frequency. A sentiment analyzer learned by a machine learning method can classify tweets according to their polarity values. We have an assumption that tweets collected by using these topic keywords deal with the same topics as the newspaper articles mentioned if the tweets and the newspapers are generated around the same time. and we tried to verify the validity of this assumption.

Development of Urban Farm Management System using Commercial SNS as IoT Platform (SNS를 IoT 플랫폼으로 이용한 도시농장 관리시스템 개발)

  • Ryu, Dae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.149-154
    • /
    • 2013
  • IoT is emerging topic of the post-smartphone era. But IoT service is actually not easy but due to the absence of the open standard IoT service platform. In this study, We propose and implement IoT services platform using commercial SNS platform like Tweet, Facebook or YouTube. we implement the intelligent control system of the urban farm using our IoT services platform as an example. Our system can save an additional server deployment and management cost using open SNS platform like Tweet or Facebook or Youtube. In addition, there are needs to develop App. for the smartphone because we can take advantage of the user interface which is developed by global enterprises.

Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique (트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.419-426
    • /
    • 2018
  • Due to the FMD(foot-and-mouth disease), the domestic animal husbandry and related industries suffer enormous damage every year. Although various academic researches related to FMD are ongoing, engineering studies on the social effects of FMD are very limited. In this study, we propose a systematic methodology to analyze emotional responses of regular citizens on FMD using text mining techniques. The proposed system first collects data related to FMD from the tweets posted on Twitter, and then performs a polarity classification process using a deep-learning technique. Second, keywords are extracted from the tweet using LDA, which is one of the typical techniques of topic modeling, and a keyword network is constructed from the extracted keywords. Finally, we analyze the various social effects of regular citizens on FMD through keyword network. As a case study, we performed the emotional analysis experiment of regular citizens about FMD from July 2010 to December 2011 in Korea.