For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.
A digital in-line holographic particle image velocimetry (HPIV) which can be applied to measure three-dimensional velocity fields of turbulent flows was developed. There are three different implementation methods of HPIV: traditional film-based HPIV, intermediate HPIV and digital HPIV. The traditional film-based HPIV and intermediate HPIV method is rather troublesome to do experiments and takes long calculation time, compared with the digital HPIV, Configuration of the digital in-line HPIV is simple and the data processing routine is similar to conventional 2D PIV methods. The digital HPIV velocity field measurement consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved PTV algorithm to extract the displacement of particle each placed in 3D space. The developed digital in-line HPIV system was applied to a vertical jet flow. The 3D velocity vectors measured by the digital HPIV method in the near field are in a good agreement with 2D PIV results.
원자력·화력, 제철소 등의 임해공업시설로부터 온수 방출의 확산에 대한 정성, 정량적 예측은 환경관리 및 냉각수 취·배수로 설계에 매우 중요하다. 본 연구는 난류 및 부력효과가 강한 온배수의 주요 물리적 특성을 규명하고 실무에 많이 사용되고 있는 MIT 및 PDS 적분모델의 비교평가를 실시하였다. 일반적으로 MIT 및 PDS 모델은 성층화되지 않은 수역에서 주위수 및 제트 방출각도를 고려하여 온배수 거동을 산정하는 모델이다. 해석결과는 그 구성의 상이성에 의해 매우 다름이 규명되어, 온배수의 정확한 산정을 위해서는 난류모델을 이용한 수치모델의 개발 및 이의 적용이 요구된다.
The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.
주기적인 와류화염과 열방출 진동의 연관성에 대한 실험적인 연구가 수행되었다. 난류제트화염은 덤프 연소기에서 재순환 되는 뜨거운 생성물에 의해서 안정화되며, 큰 스케일의 주기적 와류가 음파에 의해서 제트화염에 부가되었다. 실제적인 연소기에서의 불안정 현상을 모사하기 위해 가진주파수와 실험변수들을 조절하였다. 본 연구의 목적은 원치 않는 열방출의 진동을 유도시키는 와류-열방출의 연관성을 분석하여, 연소불안정의 능동제어를 위해 사용될 수 있는 알맞은 연료분사 패턴을 조사하는 것이다. 주기적인 패턴을 측정할 수 있는 슐리렌 기법과 CH* chemiluminescence 기법이 사용되었으며, 실험결과는 와류 생성 사이클의 위상에 따라서 서로 비교되었다.
Turbulent jet discharges in subcooled water pools are essential for safety systems in nuclear power plants, specifically in the pressure suppression pool of boiling water reactors and In-containment Refueling Water Storage Tank of advanced pressurized water reactors. The gas and liquid flow in these systems is investigated using multiphase flow analysis. This field has been extensively examined using a combination of experiments, theoretical models, and Computational Fluid Dynamics (CFD) simulations. ANSYS CFX offers two approaches to model multiphase flow behavior. The non-homogeneous Eulerian-Eulerian Model has been used in this work; it computes global information and is more convenient to study interpenetrated fluids. This study utilized the Large Eddy Simulation Model as the turbulence model, as it is better suited for non-stationary and buoyant flows. The CFD results of this study were validated with experimental data and theoretical results previously obtained. The figures of merit dimensionless penetration length and the dimensionless buoyancy length show good agreement with the experimental measurements. Correlations for these variables were obtained as a function of dimensionless numbers to give generality using only initial boundary conditions. CFD numerical model developed in this research has the capability to simulate the behavior of non-condensable gases discharged in water.
표층밀도분류에 대한 수치계산에서 문제로 되는 것은 자유수면의 처리, 레이놀즈응력/플럭스항, 특히 난류변동성분에 미치는 부력효과 등에 관련된 것이며, 이것에 대한 보다 집중적인 연구가 필요하다. 또한, 농도장이나 온도장에서의 난류변동성분을 측정하는 데 있어서의 어려움으로 인한 실험자료의 부족으로 수치 계산으로부터 얻어진 예측결과의 충분한 검증은 이루어지지 않고 있다. 본 연구에서는 2차원 표층밀도분류에 대한 유동특성을 조사하기 위하여 난류의 비등방성을 고려하여 난류응력을 직접 계산하는 대수응력모델을 적용하여 수치계산을 행하고, 그 결과를 실험결과와 비교ㆍ검토하였다. 검토한 결과 대수응력모델은 전 영역모델은 전 영역에서 2차원 표층밀도분류의 유동특성을 양호하게 재현하였으며, 특히 부력효과로 인한 성층화가 발생하는 부력 탁월영역에서 난류유동장의 흐름특성을 합리적으로 예측함을 입증하였다.
본 수치적 해석에서는 H$_{w}$/H$_{g}$의 비가 5.0~16.7의 범위에서 수행된 실험결과를 바탕으로 기존의 k-.epsilon. 난류모델을 사용하여, 고려하고자 하는 변수, 즉 유입유속, 입구 게이트의 높이, 수위, 배플의 유.무등에 따라서 액체의 유동형태가 어떻게 변하는가를 살펴 보고자 한다.다.
본 논문에서는 선박 수중방사소음 저감을 위한 에어마스커의 기포크기 추정 모델을 제시하였다. 제시된 모델은 Rayleigh의 제트 불안정 모델과 연속 조건을 이용하여 유도된 기존 모델에 공기의 제트유속을 도입함으로써 저속유동 조건에서 발산하는 단점을 보완 하였다. 공기의 제트유속은 유동이 없는 경우 기포의 크기를 이용하여 추정하였다. 유동이 없는 매질에서 기포의 크기는 분사된 공기의 레이놀즈수를 기반으로 층류구간, 천이구간, 그리고 난류구간으로 나누어 경험적 방법으로 추정 하였다. 제시된 기포크기 추정 모델은 Computational Fluid Dynamics(CFD) 해석결과 그리고 기존 문헌의 실험결과와 비교하여 잘 일치함을 확인하였다. 끝으로, 음향 역산법을 활용하여 대형터널에서 수행된 에어마스커 공기분사 실험의 계측된 삽입손실로부터 기포의 분포를 추정하였다. 역산된 기포분포와 기포크기 추정 모델의 추정 결과를 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.