DOI QR코드

DOI QR Code

Numerical simulation of air discharged in subcooled water pool

  • Y. Cordova (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV)) ;
  • D. Blanco (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV)) ;
  • Y. Rivera (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV)) ;
  • C. Berna (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV)) ;
  • J.L. Munoz-Cobo (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV)) ;
  • A. Escriva (Instituto Universitario de Ingeniería Energetica, Universitat Politecnica de Valencia (UPV))
  • Received : 2023.03.31
  • Accepted : 2023.06.25
  • Published : 2023.10.25

Abstract

Turbulent jet discharges in subcooled water pools are essential for safety systems in nuclear power plants, specifically in the pressure suppression pool of boiling water reactors and In-containment Refueling Water Storage Tank of advanced pressurized water reactors. The gas and liquid flow in these systems is investigated using multiphase flow analysis. This field has been extensively examined using a combination of experiments, theoretical models, and Computational Fluid Dynamics (CFD) simulations. ANSYS CFX offers two approaches to model multiphase flow behavior. The non-homogeneous Eulerian-Eulerian Model has been used in this work; it computes global information and is more convenient to study interpenetrated fluids. This study utilized the Large Eddy Simulation Model as the turbulence model, as it is better suited for non-stationary and buoyant flows. The CFD results of this study were validated with experimental data and theoretical results previously obtained. The figures of merit dimensionless penetration length and the dimensionless buoyancy length show good agreement with the experimental measurements. Correlations for these variables were obtained as a function of dimensionless numbers to give generality using only initial boundary conditions. CFD numerical model developed in this research has the capability to simulate the behavior of non-condensable gases discharged in water.

Keywords

Acknowledgement

This work was supported by the project THAIS co-financed by the CSN (Nuclear Safety Council of Spain) and the UPV (Polytechnical University of Valencia). The authors also would like to express gratitude to the Generalitat Valenciana (Spain) for its support under the Santiago Grisolia Program/2018/140.

References

  1. J.L. Munoz-Cobo, D. Blanco, C. Berna, Y. Cordova, Review of instabilities produced by direct contact condensation of steam injected in water pools and tanks, Prog. Nucl. Energy 153 (2022), https://doi.org/10.1016/j.pnucene.2022.104404. 
  2. Y. Cordova, D. Blanco, C. Berna, J.L. Munoz-Cobo, A. Escriva, Y. Rivera, Experimental characterization of the dimensionless momentum length for submerged jet discharges of air-steam mixtures into stagnant water, Int. J. Comput. Methods Exp. Meas. 10 (2022) 195-210, https://doi.org/10.2495/cmem-v10-n3-195-210. 
  3. B. Pershagen, LIGHT WATER REACTOR SAFETY Probabilistic Risk Assessment in the Nuclear Power Industry, 1989. 
  4. X. Wang, D. Grishchenko, P. Kudinov, Pre-test analysis for definition of steam injection tests through multi-hole sparger in PANDA facility, Nucl. Eng. Des. 386 (2022), 111573, https://doi.org/10.1016/j.nucengdes.2021.111573. 
  5. Y. Zhang, D. Lu, Z. Wang, X. Fu, Q. Cao, Y. Yang, G. Wu, Experimental research on the thermal stratification criteria and heat transfer model for the multi-holes steam ejection in IRWST of AP1000 plant, Appl. Therm. Eng. 107 (2016) 1046-1056, https://doi.org/10.1016/j.applthermaleng.2016.07.083. 
  6. Y.-T. Moon, H.-D. Lee, G.-C. Park, CFD simulation of steam jet-induced thermal mixing in subcooled water pool, Nucl. Eng. Des. 239 (2009) 2849-2863, https://doi.org/10.1016/j.nucengdes.2009.08.003. 
  7. J. Wang, L. Chen, Q. Cai, C. Hu, C. Wang, Direct contact condensation of steam jet in subcooled water: a review, Nucl. Eng. Des. 377 (2021) 1-28, https://doi.org/10.1016/j.nucengdes.2021.111142. 
  8. K. Harby, S. Chiva, J.L. Munoz-Cobo, An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient, Exp. Therm. Fluid Sci. 53 (2014) 26-39, https://doi.org/10.1016/J.EXPTHERMFLUSCI.2013.10.009. 
  9. K. Harby, S. Chiva, J.L. Munoz-Cobo, Modelling and experimental investigation ~ of horizontal buoyant gas jets injected into stagnant uniform ambient liquid, Int. J. Multiphas. Flow 93 (2017) 33-47, https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.008. 
  10. M.R. Davidson, Flow in the stagnation zone during sumerged injection of a swirling gas jet, Chem. Eng. Sci. 45 (1990) 687-694.  https://doi.org/10.1016/0009-2509(90)87011-G
  11. G.H. Jirka, Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: single round jet, Environ. Fluid Mech. 4 (2004) 1-56, https://doi.org/10.1023/A:1025583110842. 
  12. A.H. Castillejos, J.K. Brimacombe, Measurement of physical characteristics of bubbles in gas-liquid plumes: Part I. An improved electroresistivity probe technique, Metall. Trans. B 18 (1987) 649-658, https://doi.org/10.1007/BF02672881. 
  13. K. Ito, S. Kobayashi, M. Tokuda, Measured Using an Isokinetic Sampling Probe II o ssu 22 (1991) 439-445. 
  14. W. Li, Z. Meng, Z. Sun, L. Sun, C. Wang, Investigations on the penetration length of steam-air mixture jets injected horizontally and vertically in quiescent water, Int. J. Heat Mass Tran. 122 (2018) 89-98, https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.075. 
  15. Y. Cordova, Y. Rivera, D. Blanco, C. Berna, J.L. Munoz-Cobo, A. Escriva, Experimental investigation of submerged horizontal air-steam mixture jets into stagnant water, Adv. Fluid Mech. XIII. 1 (2020) 89-101, https://doi.org/10.2495/afm200091. 
  16. W. Li, Z. Meng, J. Sun, W. Cai, Y. Hou, Air horizontal jets into quiescent water, Nucl. Eng. Technol. (2023) 15, https://doi.org/10.1016/j.net.2023.02.024. 
  17. B.U.N. Igwe, S. Ramachandran, J.C. Fulton, Jet penetration and liquid splash in submerged gas injection, Metall. Trans. A 4 (1973) 1887-1894, https://doi.org/10.1007/BF02665417. 
  18. E.O. Hoefele, J.K. Brimacombe, Flow regimes in submerged gas injection, Metall. Trans. B 10 (1979) 631-648, https://doi.org/10.1007/BF02662566. 
  19. J.L. Carreau, F. Roger, L. Loukarfi, L. Gbahoue, P. Hobbes, Penetration of a horizontal gas jet sumerged in a liquid, in: Proc. Intersoc. Energy Convers. Eng. Conf., 1986, pp. 315-319. 
  20. A. Emani, C. Briens, Study of downward gas jets into a liquid, AlChe J 54 (2008) 2269-2280, https://doi.org/10.1002/aic. 
  21. H.Y. Kim, Y.Y. Bae, C.H. Song, J.K. Park, S.M. Choi, Experimental study on stable steam condensation in a quenching tank, Int. J. Energy Res. 25 (2001) 239-252, https://doi.org/10.1002/er.675. 
  22. X.-Z. Wu, J.-J. Yan, W.-J. Li, D.-D. Pan, D.-T. Chong, Experimental study on sonic steam jet condensation in quiescent subcooled water, Chem. Eng. Sci. 64 (2009) 5002-5012, https://doi.org/10.1016/j.ces.2009.08.007. 
  23. J. Yan, X. Wu, D. Chong, Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water, Sci. China, Ser. E Technol. Sci. 52 (2009) 1493-1501, https://doi.org/10.1007/s11431-009-0177-2. 
  24. Z. Meng, W. Zhang, J. Liu, R. Yan, G. Shen, Experimental study on the condensation of sonic steam in the underwater environment, Nucl. Eng. Technol. 51 (2019) 987-995, https://doi.org/10.1016/j.net.2019.02.003. 
  25. D. Zhang, L. Tong, X. Cao, Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux, Nucl. Eng. Technol. 55 (2022) 780-791, https://doi.org/10.1016/j.net.2022.10.001. 
  26. J.M.-C. Lin, Transient Gas Jets into Liquid, 1986. 
  27. T.A. Engh, M. Nilmani, Bubbling at high flow rates in inviscid and viscous liquids (slags), Metall. Trans. B 19 (1988) 83-94, https://doi.org/10.1007/BF02666494. 
  28. Z. Dai, B. Wang, L. Qi, H. Shi, Experimental study on hydrodynamic behaviors of high-speed gas jets in still water, Acta Mech. Sin. Xuebao. 22 (2006) 443-448, https://doi.org/10.1007/s10409-006-0029-2. 
  29. H.H. Shi, B.Y. Wang, Z.Q. Dai, Research on the mechanics of underwater supersonic gas jets, Sci. China Phys. Mech. Astron. 53 (2010) 527-535, https://doi.org/10.1007/s11433-010-0150-x. 
  30. A. Mersmann, Flooding point of liquid/liquid countercurrent columns, Chem. Eng. Technol. 52 (1980). 
  31. ANSYS Inc, Ansys CFX-Solver Theory Guide, Version-2022R1, 2022, p. 386. 
  32. ANSYS Inc, Ansys CFX-Solver Modeling Guide, Version-2022R1, 2022, p. 740. 
  33. S.S. Gulawani, J.B. Joshi, M.S. Shah, C.S. RamaPrasad, D.S. Shukla, CFD analysis of flow pattern and heat transfer in direct contact steam condensation, Chem. Eng. Sci. 61 (2006) 5204-5220, https://doi.org/10.1016/j.ces.2006.03.032. 
  34. A. Shah, I.R. Chughtai, M.H. Inayat, Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water, Chin. J. Chem. Eng. 18 (2010) 577-587, https://doi.org/10.1016/S1004-9541(10)60261-3. 
  35. V. Tanskanen, A. Jordan, M. Puustinen, R. Kyrki-Rajamaki, CFD simulation and € pattern recognition analysis of the chugging condensation regime, Ann. Nucl. Energy 66 (2014) 133-143, https://doi.org/10.1016/j.anucene.2013.12.007. 
  36. X.-H. Qu, H. Sui, M.-C. Tian, CFD simulation of steam-air jet condensation, Nucl. Eng. Des. 297 (2016) 44-53, https://doi.org/10.1016/j.nucengdes.2015.11.011. 
  37. L. Zhou, D. Chong, J. Liu, J. Yan, Numerical study on flow pattern of sonic steam jet condensed into subcooled water, Ann. Nucl. Energy 99 (2017) 206-215, https://doi.org/10.1016/j.anucene.2016.08.024. 
  38. L. Wang, X. Yue, Q. Zhao, D. Chong, J. Yan, Numerical investigation on the effects of steam and water parameters on steam jet condensation through a double-hole nozzle, Int. J. Heat Mass Tran. 126 (2018) 831-842, https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.090. 
  39. A. Grazevicius, A. Bousbia-Salah, Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility, Nucl. Eng. Technol. (2023) 19, https://doi.org/10.1016/j.net.2023.02.017. 
  40. S.Q. Li, P. Wang, T. Lu, Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model, Prog. Nucl. Energy 78 (2015) 201-215, https://doi.org/10.1016/j.pnucene.2014.10.002. 
  41. S.K. Dahikar, M.J. Sathe, J.B. Joshi, Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD, Chem. Eng. Sci. 65 (2010) 4606-4620, https://doi.org/10.1016/j.ces.2010.05.004. 
  42. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A. 3 (1991) 1760-1765, https://doi.org/10.1063/1.857955. 
  43. D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids 4 (1992) 633-635, https://doi.org/10.1063/1.858280. 
  44. NEA/CSNI, Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications - Revision, 2015. 
  45. ANSYS Inc, ANSYS 2022 R1 - Meshing User's Guide, 2022.