DOI QR코드

DOI QR Code

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic (Reactor Physics Department, "Jozef Stefan" Institute) ;
  • Valerio Mascolino (Nuclear Engineering Program, Virginia Tech, Northern Virginia Center) ;
  • Alireza Haghighat (Nuclear Engineering Program, Virginia Tech, Northern Virginia Center) ;
  • Luka Snoj (Reactor Physics Department, "Jozef Stefan" Institute)
  • Received : 2023.04.12
  • Accepted : 2023.06.23
  • Published : 2023.10.25

Abstract

The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

Keywords

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0073 Reactor Physics) The authors acknowledge the project PR-08974 Training of young researchers was financially supported by the Slovenian Research Agency.

References

  1. L. Snoj, M. Ravnik, Power peakings in mixed triga cores, Nucl. Eng. Des. 238 (2008) 2473-2479.  https://doi.org/10.1016/j.nucengdes.2008.02.005
  2. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Technical Report, US Atomic Energy Commission, Washington, DC (United States), 1970. 
  3. M. Kromar, B. Kurinꠑciꠑc, Dragon and cord-2 nuclear calculation of the npp krꠑsko fuel assembly, Nucl. Eng. Des. 246 (2012) 58-62.  https://doi.org/10.1016/j.nucengdes.2011.06.043
  4. A. Hall, Y. Xu, A. Ward, T. Downar, K. Shirvan, M. Kazimi, Advanced Neutronics Methods for Analysis of the rbwr-ac 108, 2013, pp. 771-774. 
  5. M. Hursin, A. Vasiliev, H. Ferroukhi, A. Pautz, Comparison of serpent and casmo-5m for pressurized water reactors models, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), 2013, pp. 5-9. 
  6. L. Ghasabyan, K. Mikityuk, J. Krepel, S. Pelloni, Use of serpent monte-carlo code for development of 3d full-core models of gen-iv fast spectrum reactors and preparation of safety parameters/cross-section data for transient analysis with fast code system, in: Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). COMPANION CD-ROM, Proceedings of an International Conference, 2015. 
  7. D. Calic, M. Kromar, L. Snoj, Use of effective diffusion homogenization method with the Monte Carlo code for light water reactor, Ann. Nucl. Energy 94 (2016) 392-398.  https://doi.org/10.1016/j.anucene.2016.04.008
  8. R. Jeraj, T. Zagar, M. Ravnik, Monte Carlo simulation of the triga mark ii benchmark experiment with burned fuel, Nucl. Technol. 137 (2002) 169-180.  https://doi.org/10.13182/NT02-A3266
  9. A. Persic, T. Zagar, M. Ravnik, S. Slavic, B. Zefran, D. Calic, A. Trkov, G. Zerovnik, A. Jazbec, L. Snoj, Triglav: a program package for triga reactor calculations, Nucl. Eng. Des. 318 (2017) 24-34.  https://doi.org/10.1016/j.nucengdes.2017.04.010
  10. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150. 
  11. J. Leppanen, A. Isotalo, Burnup Calculation Methodology in the Serpent 2 Monte Carlo Code, in: Technical Report, American Nuclear Society, Inc., 2012, 555 N. Kensington Avenue, La Grange Park ... 
  12. M. Aufiero, A. Cammi, C. Fiorina, J. Leppanen, L. Luzzi, M.E. Ricotti, An extended version of the serpent-2 code to investigate fuel burn-up and core material evolution of the molten salt fast reactor, J. Nucl. Mater. 441 (2013) 473-486.  https://doi.org/10.1016/j.jnucmat.2013.06.026
  13. A. Pungercic, D. Calic, L. Snoj, Computational burnup analysis of the triga mark ii research reactor fuel, Prog. Nucl. Energy 130 (2020), 103536. 
  14. N. Roskoff, A. Haghighat, Development of a novel fuel burnup methodology using the rapid particle transport code system, in: 2018 International Conference on Physics of Reactors: Reactor Physics Paving the Way towards More Efficient Systems, PHYSOR 2018, Sociedad Nuclear Mexicana, AC, 2018, pp. 709-721. 
  15. A. Haghighat, K. Royston, W. Walters, Mrt methodologies for real-time simulation of nonproliferation and safeguards problems, Ann. Nucl. Energy 87 (2016) 61-67.  https://doi.org/10.1016/j.anucene.2015.06.004
  16. W. Walters, N.J. Roskoff, A. Haghighat, A fission matrix approach to calculate pin-wise 3d fission density distribution, Proc. M&C 2 (2015) 1351-1361. 
  17. W.J. Walters, N.J. Roskoff, A. Haghighat, The rapid fission matrix approach to reactor core criticality calculations, Nucl. Sci. Eng. 192 (2018) 21-39.  https://doi.org/10.1080/00295639.2018.1497395
  18. A. Haghighat, Monte Carlo Methods for Particle Transport, Crc Press, 2020. 
  19. T. Goricanec, B. Kos, K. Ambrozic, A. Trkov, L. Snoj, M. Kromar, Determination of neutron flux redistribution factors for a typical pressurized water reactor ex-core measurements using Monte Carlo technique, Front. Energy Res. 11 (2023). 
  20. NEA 7329, International Handbook of Evaluated Criticality Safety Benchmark Experiments, OECD Nuclear Energy Agency, Paris, 2017. 
  21. NEA 7329, International Handbook of Evaluated Reactor Physics Benchmark Experiments, OECD Nuclear Energy Agency, Paris, 2017. 
  22. F. Michel-Sendis, I. Gauld, J. Martinez, C. Alejano, M. Bossant, D. Boulanger, O. Cabellos, V. Chrapciak, J. Conde, I. Fast, M. Gren, K. Govers, M. Gysemans, V. Hannstein, F. Havlꠙuj, M. Hennebach, G. Hordosy, G. Ilas, R. Kilger, R. Mills, D. Mountford, P. Ortego, G. Radulescu, M. Rahimi, A. Ranta-Aho, K. Rantam€ aki, B. Ruprecht, N. Soppera, M. Stuke, K. Suyama, S. Tittelbach, C. Tore, S.V. Winckel, A. Vasiliev, T. Watanabe, T. Yamamoto, T. Yamamoto, Sfcompo2.0: an oecd nea database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110 (2017) 779-788. 
  23. I.C. Gauld, M.L. Williams, F. Michel-Sendis, J.S. Martinez, Integral nuclear data validation using experimental spent nuclear fuel compositions, Nucl. Eng. Technol. 49 (2017) 1226-1233. Special Issue on International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering 2017 (M&C 2017).  https://doi.org/10.1016/j.net.2017.07.002
  24. F. Michel-Sendis, M. Bossant, N. Soppera, I. Gauld, A New OECD/NEA Database of Nuclide Compositions of Spent Nuclear Fuel, Technical Report, 2015. 
  25. Z. Stancar, L. Barbot, C. Destouches, D. Fourmentel, J.-F. Villard, L. Snoj, Computational validation of the fission rate distribution experimental benchmark at the jsi triga mark ii research reactor using the Monte Carlo method, Ann. Nucl. Energy 112 (2018) 94-108.  https://doi.org/10.1016/j.anucene.2017.09.039
  26. L. Snoj, G. Zerovnik, A. Trkov, Computational analysis of irradiation facilities at the jsi triga reactor, Appl. Radiat. Isot. 70 (2012) 483-488.  https://doi.org/10.1016/j.apradiso.2011.11.042
  27. V. Radulovic, Z. Stancar, L. Snoj, A. Trkov, Validation of absolute axial neutron flux distribution calculations with mcnp with 197au (n, γ) 198au reaction rate distribution measurements at the jsi triga mark ii reactor, Appl. Radiat. Isot. 84 (2014) 57-65.  https://doi.org/10.1016/j.apradiso.2013.11.027
  28. V. Mascolino, A. Haghighat, L. Snoj, Verification and validation of rapid formulations and algorithms based on dosimetry measurements at the jsi triga mark-ii reactor, Nucl. Sci. Eng. 195 (2021) 937-953.  https://doi.org/10.1080/00295639.2021.1890321
  29. N. Roskoff, V. Mascolino, A. Haghighat, Accuracy of Rapid for Simulation of Pools with Diverse Spent Fuels, 2018. 
  30. V. Mascolino, A. Haghighat, N.J. Roskoff, Evaluation of rapid for a unf cask benchmark problem, in: EPJ Web of Conferences, vol. 153, EDP Sciences, 2017, 05025. 
  31. V. Mascolino, N.J. Roskoff, A. Haghighat, Benchmarking of the rapid code system using the gbc-32 cask with variable burnups, in: Proc. PHYSOR 2018: Reactor Physics Paving the Way towards More Efficient Systems, 2018, pp. 22-26. 
  32. D. He, W.J. Walters, A local fission matrix correction method for heterogeneous whole core transport with rapid, Ann. Nucl. Energy 134 (2019) 263-272.  https://doi.org/10.1016/j.anucene.2019.06.008
  33. T.J. Topham, A. Rau, W.J. Walters, An iterative fission matrix scheme for calculating steady-state power and critical control rod position in a triga reactor, Ann. Nucl. Energy 135 (2020), 106984. 
  34. V. Mascolino, A. Haghighat, L. Snoj, Development and validation of new algorithms for control rods insertion modeling in the rapid code system using the jsi triga mark-ii reactor, Ann. Nucl. Energy 166 (2022), 108711. 
  35. V. Mascolino, Development and benchmarking of advanced FM-based particle transport algorithms for steady-state and transient conditions, Implementation in RAPID and Its VRS Web-application (2021). Ph.D. thesis. 
  36. The development of the combined fission matrix method in small advanced reactor design and optimization, Ann. Nucl. Energy 180 (2023), 109488. 
  37. S.M. Bowman, Scale 6: comprehensive nuclear safety analysis code system, Nucl. Technol. 174 (2011) 126-148.  https://doi.org/10.13182/NT10-163
  38. M. DeHart, Z. Zhong, T. Downar, Triton: an advanced lattice code for mox fuel calculations, Proc.. Am. Nucl. Soc.Adv.Nucl. Fuel.Manag. III (2003). 
  39. M.E. Rising, J.C. Armstrong, S.R. Bolding, F.B. Brown, J.S. Bull, T.P. Burke, A.R. Clark, D.A. Dixon, R.A. Forster III, J.F. Giron, T.S. Grieve, H.G. Hughes III, C.J. Josey, J.A. Kulesza, R.L. Martz, A.P. McCartney, G.W. McKinney, S.W. Mosher, E.J. Pearson, C.J. Solomon Jr., S. Swaminarayan, J.E. Sweezy, S.C. Wilson, A.J. Zukaitis, MCNP® Code Version 6.3.0 Release Notes, Technical Report LA-UR-22-33103, Rev. 1,, Los Alamos National Laboratory, Los Alamos, NM, USA, 2023. 
  40. G.E. Sjoden, A. Haghighat, Pentran: a three-dimensional scalable transport code with complete phase-space decomposition, Trans. Am. Nucl. Soc. 74 (1996). 
  41. A. Haghighat, G. Sjoden, V. Kucukboyaci, Effectiveness of pentranTM's unique numerics for simulation of the kobayashi benchmarks, Prog. Nucl. Energy 39 (2001) 191-206.  https://doi.org/10.1016/S0149-1970(01)00012-9
  42. A. Haghighat, J.C. Wagner, Monte Carlo variance reduction with deterministic importance functions, Prog. Nucl. Energy 42 (2003) 25-53.  https://doi.org/10.1016/S0149-1970(02)00002-1
  43. V. Mascolino, A. Haghighat, Validation of the transient fission matrix code trapid against the flattop-pu benchmark, in: Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2019), 2019, pp. 25-29. 
  44. K. Royston, A. Haghighat, W. Walters, C. Yi, G. Sjoden, Determination of current at a detector window using a hybrid adjoint function methodology, Prog.Nucl. Sci. Technol. 4 (2014) 528-532.  https://doi.org/10.15669/pnst.4.528
  45. M.-J. Wang, A. Haghighat, A novel detector response formulation for rapid, in: Physics of Reactors (PHYSOR): Reactor Physics Paving Ways towards More Efficient Systems, Cancun, Mexico, 2018. April 22 26. 
  46. N. Roskoff, Development of a Novel Fuel Burnup Methodology and Algorithm in RAPID and its Benchmarking and Automation, Ph.D. thesis, Virginia Tech, 2018. 
  47. D.L. Aldama, F. Leszczynski, A. Trkov, Wims-d Library Update, Final report of a co-ordinate research project, 2003. 
  48. D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the serpent 2 code on triga mark ii benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170.  https://doi.org/10.1016/j.apradiso.2015.10.022
  49. R. Henry, I. Tiselj, L. Snoj, Cfd/monte-carlo neutron transport coupling scheme, application to triga reactor, Ann. Nucl. Energy 110 (2017) 36-47.  https://doi.org/10.1016/j.anucene.2017.06.018
  50. A. Pungercic, V. Radulovic, I. Svajger, L. Snoj, Upgrades to the Monte Carlo computational model of the jsi triga research reactor, in: 2021 International COnference Nuclear Energy for New Europe - NENE 2021, Nuclear Society of Slovenia, DJS, 2021, 306.1-306.8. 
  51. M. Pusa, et al., Numerical Methods for Nuclear Fuel Burnup Calculations, Aalto University, 2013. 
  52. T. Kulikowska, Wimsd-5b: a Neutronic Code for Standard Lattice Physics Analysis, Distributed by NEA Data Bank. Saclay, France, 1996.
  53. M.B. Chadwick, M. Herman, P. Obloꠑzinsky, M.E. Dunn, Y. Danon, A. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, et al., Endf/b-vii. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996.  https://doi.org/10.1016/j.nds.2011.11.002
  54. V. Radulovic, R. Jacimovic, A. Pungerꠑciꠑc, I. Vavtar, L. Snoj, A. Trkov, Characterization of the neutron spectra in three irradiation channels of the jsi triga reactor using the grupint spectrum adjustment code, Nucl. Data Sheets 167 (2020) 61-75.  https://doi.org/10.1016/j.nds.2020.07.003
  55. R. Berndt, Verification of spent pwr fuel data using the 154 eu, 134 cs and 137 cs activities, Kernenergie 31 (1988) 59-63.