DOI QR코드

DOI QR Code

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal (Computational Mechanics and Materials, Idaho National Laboratory) ;
  • Anil Prasad (Advanced Fuels and Reactor Physics, Canadian Nuclear Laboratories) ;
  • Jayangani Ranasinghe (Department of Physics and Engineering Physics, University of Saskatchewan) ;
  • Ericmoore Jossou (Nuclear Science and Technology Department, Brookhaven National Laboratory) ;
  • Lukas Bichler (School of Engineering, University of British Columbia-Okanagan) ;
  • Jerzy Szpunar (Department of Mechanical Engineering, University of Saskatchewan)
  • Received : 2023.01.12
  • Accepted : 2023.06.21
  • Published : 2023.10.25

Abstract

Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of Natural Sciences and Engineering Research Council (NSERC) Canada. In addition, this manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07- 05ID14517 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. Appreciate the valuable suggestions by Dr. Jijin Raj Ayanath Kuttiyatveetil.

References

  1. Accident Tolerant Fuel Concepts for Light Water Reactors, TECDOC Series No. 1797 (INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2016.
  2. Advanced Fuel Pellet Materials and Fuel Rod Design for Water Cooled Reactors, TECDOC Series No. 1654 (INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2010.
  3. Y.W. Rhee, D.J. Kim, J.H. Kim, J.H. Yang, K.S. Kim, K.W. Kang, K.W. Song, Fabrication of sintered annular fuel pellet for HANARO irradiation test, Journal of Nuclear Science and Technology 47 (2010) 345.
  4. J.A. Khan, T.W. Knight, S.B. Pakala, W. Jiang, R. Fang, J.S. Tulenko, Enhanced thermal conductivity for LWR fuel, Nuclear Technology 169 (2010) 61.
  5. S. Yeo, E. Mckenna, R. Baney, G. Subhash, J. Tulenko, Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by spark plasma sintering (SPS), Journal of Nuclear Materials 433 (2013) 66.
  6. S. Yeo, R. Baney, G. Subhash, J. Tulenko, The influence of sic particle size and volume fraction on the thermal conductivity of spark plasma sintered UO2-SiC composites, Journal of Nuclear Materials 442 (2013) 245.
  7. S. Ishimoto, M. Hirai, K. Ito, Y. Korei, Thermal conductivity of UO2-BeO pellet, Journal of Nuclear Science and Technology 33 (1996) 134.
  8. W. Zhou, R. Liu, S.T. Revankar, Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity U02-BeO fuel in light water reactors, Annals of Nuclear Energy 81 (2015) 240.
  9. B. Li, Z. Yang, J. Jia, Y. Zhong, X. Liu, P. Zhang, R. Gao, T. Liu, R. Li, H. Huang, M. Sun, D. Mazhao, High temperature thermal physical performance of BeO/UO2 composites prepared by spark plasma sintering (SPS), Scripta Materialia 142 (2018) 70.
  10. S. Kim, W. Ko, H. Kim, S.T. Revankar, W. Zhou, D. Jo, Cost-analysis of BeO- UO2 nuclear fuel, Progress in Nuclear Energy 52 (2010) 813.
  11. R. Liu, W. Zhou, P. Shen, A. Prudil, P. Chan, Fully coupled Multiphysics modeling of enhanced thermal conductivity UO2-BeO fuel performance in a light water reactor, Nuclear Engineering and Design 295 (2015) 511.
  12. Z. Chen, G. Subhash, J.S. Tulenko, Spark plasma sintering of diamond-reinforced uranium dioxide composite fuel pellets, Nuclear Engineering and Design 294 (2015) 52.
  13. J. Buckley, J. Turner, T. Abram, Uranium dioxide - molybdenum composite fuel pellets with enhanced thermal conductivity manufactured via spark plasma sintering, Journal of Nuclear Materials 523 (2019) 360.
  14. M.K. Tummalapalli, J.A. Szpunar, A. Prasad, L. Malakkal, L. Bichler, Evaluation of thermophysical properties of UO2-10 vol% Mo nuclear fuel pellets, Journal of Nuclear Materials 559 (2022), 153444.
  15. A. Cartas, H. Wang, G. Subhash, R. Baney, J. Tulenko, Influence of carbon nanotube dispersion in UO2-Carbon nanotube ceramic matrix composites utilizing spark plasma sintering, Nuclear Technology 189 (2015) 258.
  16. T. Yao, G. Xin, S.M. Scott, B. Gong, J. Lian, Thermally-conductive and mechanically-robust graphene nanoplatelet reinforced UO2-composite nuclear fuels, Scientific Reports 8 (2018) 2987.
  17. D.H. Hurley, A. El-Azab, M.S. Bryan, M.W.D. Cooper, C.A. Dennett, K. Gofryk, L. He, M. Khafizov, G.H. Lander, M.E. Manley, J.M. Mann, C.A. Marianetti, K. Rickert, F.A. Selim, M.R. Tonks, J.P. Wharry, Thermal energy transport in oxide nuclear fuel, Chemical Reviews 122 (2022) 3711, pMID: 34919381.
  18. Thorium Fuel Cycle - Potential Benefits and Challenges, TECDOC Series No. 1450 (INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2005.
  19. M. Floyd, B. Bromley, J. Pencer, A canadian perspective on progress in thoria fuel science and technology, CNL Nuclear Review 6 (2017) 1.
  20. K. Furukawa, K. Arakawa, L. Erbay, Y. Ito, Y. Kato, H. Kiyavitskaya, A. Lecocq, K. Mitachi, R. Moir, H. Numata, J. Pleasant, Y. Sato, Y. Shimazu, V. Simonenco, D. Sood, C. Urban, R. Yoshioka, A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow, in: 13th International Conference on Emerging Nuclear Energy Systems 2007, vol. 2007, ICENES, 2007, pp. 5-32.
  21. P. Trinuruk, T. Obara, Particle-type burnable poisons for thorium-based fuel in HTGR, Energy Procedia 71 (2015) 22, the Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4. https://doi.org/10.1016/j.egypro.2014.11.851
  22. A. Radkowsky, A. Galperin, The nonproliferative light water thorium reactor: a new approach to light water reactor core technology, Nuclear Technology 124 (1998) 215.
  23. H.-K. Joo, J.-M. Noh, J.-W. Yoo, J.-Y. Cho, S.-Y. Park, M.-H. Chang, Alternative applications of homogeneous thoria-urania fuel in light water reactors to enhance the economics of the thorium fuel cycle, Nuclear Technology 147 (2004) 37.
  24. G. Martin, R. Girieud, Middle-term thorium strategy for pwr fleets, Energy Policy 99 (2016) 147.
  25. A. Talamo, W. Gudowski, Adapting the deep burn in-core fuel management strategy for the gas turbine-modular helium reactor to a uranium-thorium fuel, Annals of Nuclear Energy 32 (2005) 1750.
  26. S. Sahin, H.M. Sahin, A. Acir, T.A. Al-Kusayer, Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides, Annals of Nuclear Energy 36 (2009) 1032.
  27. A. Herrera-Martinez, Transmutation of Nuclear Waste in Accelerator-Driven Systems, 2004 presented on 01 Sep. 2004.
  28. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics 32 (1961) 1679.
  29. A. Momin, E. Mirza, M. Mathews, High temperature x-ray diffractometric studies on the lattice thermal expansion behaviour of uo2, tho2 and (u0.2th0.8)o2 doped with fission product oxides, Journal of Nuclear Materials 185 (1991) 308.
  30. R.O. Meyer, Analysis of Fuel Densification, 1976.
  31. D. Olander, Light water reactor fuel design and performance, in: K.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssiere (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2001, pp. 4490-4504.
  32. K.M. Mampuru, E. Ajenifuja, A. Popoola, O. Popoola, Effect of silicon carbide addition on the microstructure, hardness and densification properties of spark plasma sintered Ni-Zn-Al alloy, Journal of King Saud University - Science 31 (2019) 1122.
  33. K. Abhinav, B. Lukas, F. Randy, On the densification behavior of (0.2, 0.5, and 1-wt-%) CNT-YSZ ceramic composites processed via spark plasma sintering, Metallurgical and Materials Transactions B 46 (2015) 1666.
  34. R. Brandt, G. Neuer, Thermal conductivity and thermal radiation properties of uo2 1 (1976) 3.
  35. M. Saoudi, D. Staicu, J. Mouris, A. Bergeron, H. Hamilton, M. Naji, D. Freis, M. Cologna, Thermal diffusivity and conductivity of thorium- uranium mixed oxides, Journal of Nuclear Materials 500 (2018) 381.
  36. L. Malakkal, A. Prasad, J. Ranasinghe, E. Jossou, D. Oladimeji, B. Szpunar, L. Bichler, J. Szpunar, The effect of sps processing parameters on the microstructure and thermal conductivity of ThO2, Journal of Nuclear Materials 527 (2019), 151811.
  37. L. Malakkal, A. Prasad, E. Jossou, J. Ranasinghe, B. Szpunar, L. Bichler, J. Szpunar, Thermal conductivity of bulk and porous ThO2: atomistic and experimental study, Journal of Alloys and Compounds 798 (2019) 507.