• 제목/요약/키워드: Turbulent heat transfer

검색결과 509건 처리시간 0.025초

직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구 (Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree)

  • 최영돈;문찬
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

수직원형관내 초임계압 물의 난류 열전달에 관한 직접수치모사 (Direct Numerical Simulation of Turbulent Heat Transfer to Water at Supercritical Pressure Flowing in Vertical Pipes)

  • 이상훈;배중헌;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2471-2476
    • /
    • 2008
  • Turbulent flow and heat transfer to water at supercritical pressure flowing in vertical pipes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play an important role in turbulent flow and heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface.

  • PDF

동심 환형관 내 난류 열전달의 직접 수치 모사 (DNS of turbulent heat transfer in a concentric annulus)

  • 정서윤;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.827-830
    • /
    • 2002
  • A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at $Re_{Dh}=8900\;and\;Pr=0.71$ for two radius ratios ($R_{1}/R_{2}=0.1\;and\;0.5$) and $q^{\ast}=1.0$. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. The present numerical results show that the turbulent structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls.

  • PDF

2차원 채널 충돌제트에서 난류강도의 변화에 대한 유동 및 열전달 특성 (A Characteristics of Flow and Heat Transfer for Variation of Turbulence Intensity In the Two-Dimensional Channel Impinging Jet)

  • 윤순현;김동건;김문경
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.753-760
    • /
    • 1999
  • Experiments were conducted to investigate the effect of the initial turbulent intensity on the flow and heat transfer characteristics for a two-dimensional impinging jet. A square rod was installed at the nozzle exit to increase initial turbulent intensity. A hot wire probe and thermochromic liquid crystal technique were used to measure the turbulent intensity and the surface temperature. All measurements were made over a range of nozzle-to-plate distance from 1 to 10 at Re=20,000. When the rod is not installed, the maximum stagnation point Nusselt number is occurred at H/B=9. A higher initial turbulent intensity enhanced the heat transfer on the surface. A correlation between stagnation point Nusselt number and turbulent intensity are presented.

유동 섭동에 의한 난류예혼합화염의 열발생 모델에 관한 연구 (A Heat Release Model of Turbulent Premixed Flame Response to Acoustic Perturbations)

  • 조주형;백승욱
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.413-420
    • /
    • 2008
  • The unsteady heat release characteristics play a significant role in combustion instabilities observed in low emissions gas turbine combustors. Such combustion instabilities are often caused by coupling mechanisms between unsteady heat release rates and acoustic perturbations. A generalized model of the turbulent flame response to acoustic perturbations is analytically formulated by considering a distributed heat release along a curved mean flame front and using the flame's kinematic model that incorporates the turbulent flame development. The effects of the development of flame speed on the flame transfer functions are examined by calculating the transfer functions with a constant or developing flame speed. The flame transfer function due to velocity fluctuation shows that, when a developing flame speed is used, the transfer function magnitude decreases faster with Strouhal number than the results with a constant flame speed at low Strouhal numbers. The flame transfer function due to mixture ratio fluctuation, however, exhibits the opposite results: the transfer function magnitude with a developing flame speed increases faster than that with a constant flame speed at low Strouhal numbers. Oscillatory behaviors of both transfer function magnitudes are shown to be damped when a developing flame speed is used. Both transfer functions also show similar behaviors in the phase characteristics: The phases of both transfer functions with a developing flame speed increase more rapidly than those with a constant flame speed.

Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구 (Control of Impinging Jet Heat Transfer with Mesh Screens)

  • 조정원;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF

固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析 (Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes)

  • 김재웅;최영돈
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

2차원 채널에서 사각봉을 이용한 난류열전달 증가에 대한 수치해석 (AUGMENTATION OF TURBULENT HEAT TRANSFER IN A CHANNEL USING A SQUARE ROD)

  • 김희영;박태선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.118-124
    • /
    • 2008
  • The characteristics of heat transfer in a two-dimensional channel obstructed by a square rod is investigated by a turbulence model. The computation is made for the six cases of different rod positions between channel walls. To analyze the wall heat transfer, the heat flux of channel walls is set as a constant value and the $k-{\epsilon}-f_{\mu}$ model is employed. Downstream the square rod, the flow recirculation region appear and they are varied by the rod position. The enhancement of the turbulent heat transfer to the wall is induced by the flow instability using a square rod. The averaged heat transfer rate is maximized at a specific rod position. Finally, the effects of square rod on unsteady flows are scrutinized with the frequency analysis.

  • PDF

수직관 내 초임계상태 물의 천이상태 대류열전달현상에 관한 연구 (A Study on the Transient Convective Heat Transfer for Supercritical Water in a Vertical Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1095-1105
    • /
    • 2005
  • Numerical analysis has been carried out to investigate transient turbulent convective heat transfer in a vertical tube for supercritical water near the thermodynamic critical point. Heat transfer and fluid flow in the tube we strongly coupled due to the large variations of thermodynamic and transport properties such as density, specific heat, and turbulent viscosity. As pressure in the tube approaches to the critical pressure, the properties variation with time becomes larger. Heat transfer coefficient rapidly decreases along the tube near the pseudocritical temperature at the tube wall for $P_R<1.2$. Stanton number variation with time is largely reduced in the region of gas-like phase in comparison with Nusselt number. Turbulent viscosity ratio close to the wall increases near the pseudocritical temperature and it gradually decreases with time.

직접수치모사를 이용한 수직원형관내 초임계압 유체의 난류 열전달 특성 연구 (Direct Numerical Simulation of Turbulent Heat Transfer to Fluids at Supercritical Pressure Flowing in Vertical Tubes)

  • 배중헌;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1302-1314
    • /
    • 2004
  • Turbulent heat transfer to $CO_2$ at supercritical pressure flowing in vertical tubes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play a major role in turbulent heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface. Based on the results of the present DNS combined with theoretical considerations, the physical mechanism of this local heat transfer deterioration is elucidated.