Transactions of the Korean Society of Mechanical Engineers
/
v.19
no.1
/
pp.219-230
/
1995
The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.
The elliptic relaxation model(ERM) with the inhomogeneous correction intermediate between near wall with and far from the wall. The source of the ERM usually was appled quasi-homogeneous pressure-strain correlation in homogeneous situations. This formulation was easily applied to the linear model or non-linear pressure-strain model. It is observed that the boundary conditions of the relaxation operator dominate the homogeneous pressure-strain model in the near wall region. While looking at high-Reynolds number flows, it was found necessary to modify the effect of the relaxation operator throughout the log region by accounting for gradients of the flatness variable and turbulent length scales. These effects are kinematic blocking of the wall normal velocity fluctuation and pressure reflections from the surface. This model is wall distances and unit vectors which make the model applicable to flows boundary by a complex geometry. Inhomogeneous correction model is computed inertial and non-inertial channel flow These are compared DNS(Kim et at., Kristofffrsen & Andersson) for channel flow. The present model could be predicted well for rotating flows.
Transactions of the Korean Society of Mechanical Engineers B
/
v.24
no.8
/
pp.1104-1111
/
2000
Erosion-corrosion in a pipe system often occurs at fittings, valves, and weld beads where flow separation and reattachment yield high turbulence intensity. Thus identifying their correlations would be the first step towards resolving the erosion-corrosion problems associated with industrial applications. Bremhorst of the Univ. of Queensland, Australia, proposed that a rotating cylinder with surface roughness (two backward-facing steps periodically mounted on a circular cylinder) be an economical and tractable tool which can generate extreme flow conditions for erosion-corrosion study. In this work, DNS has been carried out for turbulent flows around the same rotating cylinder as his experimental apparatus. Our result shows that a region of intense turbulence intensity and high wall-shear stress fluctuation is formed along the cylinder surface in the recirculating region behind the step, where high mass-transfer capacity is also experimentally observed. Since corrosion is mass-transfer controlled, our finding sheds light on the direction of future corrosion research.
Transactions of the Korean Society of Mechanical Engineers B
/
v.26
no.6
/
pp.850-858
/
2002
The present study investigates in detail the combined effects of the Coriolis force and centrifugal force on the development of turbulent flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a curved region of U-bend, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal force due to the curvature of U-bend. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct. On the other hand, under negative rotation, where these two forces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces. Under the condition that the value of Rossby number and curvature ratio is large, the flow field in a rotating U-bend can be represented by two dimensionless parameters : $K_{TC}$ =Re $\sfrac{1}{4}$√λand a body force ratio F=λ/Ro. Here, $K_{TC}$ has the same dynamical meaning as $K_{TC}$ =Re√λ for laminar flow.
Transactions of the Korean Society of Mechanical Engineers B
/
v.29
no.2
s.233
/
pp.214-223
/
2005
The characteristics of flow on two parallel plane jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. In case of unventilated parallel plane jets, it was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. There was no recirculation zone in the ventilated parallel plane jets. It was found that the spanwise turbulent intensities of unventilated jets were higher than those of ventilated jets because of the interaction of jets, and the streamwise turbulent intensities of ventilated jets were higher than those of unventilated jets because of the effect of entrainment.
Transactions of the Korean Society of Mechanical Engineers
/
v.18
no.12
/
pp.3386-3394
/
1994
An experimental study has been performed on the flow over a rotating disk, where the diameter of the disk is 500 mm and the maximum vertical deviation of the upper surface is $50 \mu{m}$ for the whole range of the angular velocity up to 3400 rpm. The flow visualization experiment for the wall jet flow induced by impinging circular jet is carried out using schlieren system and measurements are made by 3-hole and 5-hole pitot tubes. Schlieren photographs show that as the rotating speed increases the wall jet flow becomes more stable and the size of the largest eddies becomes smaller. Measurements for impinging jet flow on the stationary disk verify the accuracy of the present experiment, and those for free rotating disk flow display the existence of transition region from laminar to turbulent flows. Measurements for impinging jet flow on the rotating disk exhibit the interaction between the wall jet and the viscous pumping effect, which explains the decay in size of turbulent eddies illustrated by the schlieren photographs.
In this study, numerical calculations are carried out in order to evaluate the performance of low-Re Reynolds stress model based on SSG model for a swirling turbulent flow in a pipe. The results are compared with those of k-ε model, GL model and the experimental data. The results show that low-Re Reynolds stress model and GL model give better results than k-ε model. In the region near the wall, low-Re Reynolds stress model improves the predictions. However, there is no large difference between the predictions with two Reynolds stress models.
Transactions of the Korean Society of Mechanical Engineers
/
v.18
no.11
/
pp.3039-3045
/
1994
The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.
A general purpose program for the analysis of flows in a gas turbine combustor is developed. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. A flow inside the C-type diffuser is simulated to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. A turbulent diffusion flame behind a bluff body is simulated for the combustion simulation. Simulated results show good agreement with experimental data. Finally, a turbulent flow with swirl in a gas turbine combustor was simulated. The results show two recirculating region and simulated velocity fields agree well with experimental data. The distance between two recirculating regions becomes shorter as swirl angle increases. Swirl angle changes angular momentum and streamlines in flow fields.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.3
no.1
/
pp.11-25
/
1991
The steady, incompressible developing 3-dimensional turblent flow in a square sectioned curved duct has been investigated by using partially-parabolic equation and Finite Analytic Method. The calculation of turbulent flow field is performed using 2-equation K-$\epsilon$ turbulence model, modified wall function, simpler algorithm and numerically generated body fitted coordinates. Iso-mean velocity contours at the various sections are compared with the existing experimental data and elliptic solutions by other authors. In the region of $0^{\circ}<{\theta}<71^{\circ}$, present results agree with the experimental data much better than the elliptic solution for the similar number of grid points. Furthermore, for the same tolerance, the present solution converges four times faster than the elliptic solution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.