• Title/Summary/Keyword: Turbulent Water Flow

Search Result 383, Processing Time 0.023 seconds

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Lateral Spreading of a River Plume and Transport of Suspended Sediments in the Nakdong Estuary (낙동강하구에서의 하천수 플룸의 횡방향퍼짐과 부유퇴적물의 수송)

  • Yu, Hong-Sun;Lee, Jun;Kang, Hyo-Jin;Kang, Sin-Young;Park, Kyung-Sik;Kim, Jae-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.296-301
    • /
    • 1993
  • A hydrodynamic solution for the lateral spreading of a river plume which was developed by assuming a Gaussian distribution of density difference between a turbulent jet river plume and ambient salt water is verified by the field data in the Nakdong river plume. Effect of the river plume on the transport of fine-grained suspended sediment at the Nakdong Estuary is also examined. The analysis of fold data showed a reasonably good correspondence with the theoretical solution adopted in this work Therefore, the hydrodynamic solution can be used as a useful tool in dealing with the lateral spreading of a river plume. The density stratification due to the existence of a river plume seems to cause a retarded settling of the suspended sediments in the water column. and thus a farther transport of the fine sediment is expected than in the normal steady flow.

  • PDF

Numerical Simulations of Mean Flow and Turbulent Structure of Vegetation Open-Channel Flows Using Non-linear k-$\in$ model (비선형k-${\in}$ �訝曹活� 이용한 식생된 개수로에서 평균흐름 및 난류구조수치모의)

  • Choi, Young-Woo;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.138-138
    • /
    • 2011
  • 식생된 개수로에서 식생의 영향을 파악하기 위해 k-$\in$ 난류 모형을 이용하여 수치모의를 하였다. 식생의 영향을 고려하기 위해 항력항을 추가한 지배방정식을 구성하였으며, 지배방정식을 해석하기 위하여 유한체적법을 사용하였다. 수치모의에서 구한 식생된 개수로의 흐름구조를 기존의 수리실험 결과와 비교하여 비교적 잘 일치함을 확인할 수 있다. 난류의 생성과 소멸을 수치모의한 결과, 부분구간 식생된 경우 식생높이 보다 낮은 구간에서는 후류에 의한 난류 생성이 지배적이며, 식생높이보다 높은 구간에서는 주로 마찰에 의한 난류 생성이 지배적임을 보였다. 기존의 연구들은 식생의 영향을 고려하여 개수로의 흐름을 연구한 예는 드물며, 현재까지 진행되어진 국내의 연구는 난류모형을 이용하여 식생된 개수로에서의 흐름 구조를 모의하였다. 따라서 난류흐름을 모의하는데 가장 보편적인 k-$\in$ 난류모형을 이용하여 식생된 개수로에서 수직방향으로의 흐름구조와 식생의 영향을 해석하는 것은 그 자체로도 의미 있는 연구이며, 앞으로의 환경수리 문제를 해결하기 위해 선행되어야 하는 연구이다. 식생된 개수로에서의 난류구조와 부유사 이동에 대한 식생의 영향을 비정상 1차원 수직모형으로 해석하였으며, 폐합문제를 위해 2-방정식인 k-$\in$ 난류모형을 사용하였다. k-$\in$ 난류모형에 식생에 의한 항력항을 더하여 지배방정식을 구성하였다. 수직방향에 대해 흐름방향 유속 u, 난류에너지 k, 그리고 난류에너지 소산율 $\in$의 분포를 구하고, 부유사에 대한 수송방정식을 풀었다. 식생된 개수로와 식생되지 않은 개수로에서의 유속분포, 난류강도, 레이놀즈 응력 분포와 난류의 생성과 소멸을 구하여 식생이 난류흐름에 미치는 영향을 분석하였다.

  • PDF

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

A Study on the Size and Concentration of Cohesive Sediment (점착성 유사의 크기와 농도에 관한 고찰)

  • Son, Minwoo;Park, Byeoung Eun;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.286-286
    • /
    • 2018
  • 하천에서 점착성 유사의 부유사는 입자 표면의 전자기적, 생화학적 점착력과 충돌에 의해 플럭(Floc)을 형성하고 응집된 플럭은 하천의 흐름 및 난류에 의해 파괴되기도 한다. 이 과정을 응집현상이라고 한다. 하천의 점착성 유사는 보통 플럭의 형태를 띠며 응집현상으로 인해 플럭의 밀도와 크기는 지속적으로 변화한다. 일반적으로 변화하는 플럭의 크기는 높은 질량 농도에서 증가한다고 알려져 있다(McAnally and Mehta, 2000; Maggi et al., 2007). 하지만 현장 연구에서 실측된 자료들은 종종 플럭의 크기와 농도가 반비례 관계를 가지는 경향을 보여준다(Gartner et al., 2001; Fettweis et al., 2006; Todd, 2014). 이에 따라 본 연구는 현장의 실측 자료가 일반적인 연구와 다르게 플럭의 크기와 농도가 반비례 관계를 가지는 현상을 규명하기 위해 점착성 유사의 이동을 모의하는 1차원 연직 수치 모형으로 수치 실험을 실시하고 그 결과를 분석한다. 수치 실험은 현장연구와 조건이 비슷한 이상적인 조류조건과 정류상태의 한 방향 흐름(Current Flow)을 함께 발생시키고 점착성 유사의 특징인 응집현상을 고려하였다. 모의 결과, 실측 자료와 같이 총 모의 수심 중 하상과 가까운 측정 수심에서는 플럭의 크기와 농도가 반비례 관계를 가지는 경향을 보였다. 그러나 측정 수심이 수표면 쪽으로 갈수록 플럭 크기와 농도가 비례하는 현상을 보였다. 이와 같이 서로 다른 두 가지 결과를 분석하기 위해 플럭의 크기를 결정하는 대표적인 매개변수인 농도와 난류의 강도를 나타내는 난류소산매개변수(Turbulent shear, G)를 가지고 새로운 매개변수를 만들었다. 플럭의 크기를 결정하는 방정식에서 농도는 응집의 과정에 G는 응집과 파괴의 과정에 관여한다고 알려져 있다. 새로운 매개변수로 총 모의 수심에 걸쳐 분석한 결과 하상에서 수표면 쪽으로 갈 때 난류와 농도 모두 줄어들지만 파괴와 응집의 우세를 나타내는 매개변수가 도치되는 현상을 보였다. 즉 하상부근의 강한 난류와 높은 농도가 응집현상을 만들지만 농도는 응집현상에, 난류는 응집과 파괴 모두 관여하므로 상대적으로 농도와 난류가 만들어내는 응집보다 난류가 만드는 파괴가 강할 때 플럭의 크기가 줄어드는 것으로 예측된다. 이에 따라 점착성 유사의 플럭 크기를 예측할 때에는 플럭의 크기가 농도와 선형의 관계를 가지는 것이 아닌 농도와 난류가 함께 작용하는 비선형 관계임을 고려해야 한다.

  • PDF

A simple approach to simulate the size distribution of suspended sediment (부유사 입경분포 모의를 위한 간편법)

  • Kwon, Minhyuck;Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.347-357
    • /
    • 2024
  • Numerous prior studies have delineated the size distribution of noncohesive sediment in suspension, focusing on mean size and standard deviation. However, suspensions comprise a heterogeneous mixture of sediment particles of varying sizes. The transport dynamics of suspended sediment in turbulent flow are intimately tied to settling velocities calculated based on size and density. Consequently, understanding the grain size distribution becomes paramount in comprehending sediment transport phenomena for noncohesive sediment. This study aims to introduce a straightforward modeling approach for simulating the grain size distribution of suspended sediment amidst turbulence. Leveraging insights into the contrast between cohesive and noncohesive sediment, we have meticulously revised a stochastic flocculation model originally designed for cohesive sediment to aptly simulate the grain size distribution of noncohesive sediment in suspension. The efficacy of our approach is corroborated through a meticulous comparison between experimental data and the grain size distribution simulated by our newly proposed model. Through numerical simulations, we unveil that the modulation of grain size distribution of suspended sediment is contingent upon the sediment transport capacity of the carrier fluid. Hence, we deduce that our simplified approach to simulating the grain size distribution of suspended sediment, integrated with a sediment transport model, serves as a robust framework for elucidating the pivotal bulk properties of sediment transport.

PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model (PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석)

  • Sang-Joon Lee;Min-Seok Koh;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.48-56
    • /
    • 2002
  • The flow characteristics around KRISO 3600TEU container ship model have been experimentally investigated in a circulating water channel. The instantaneous velocity vectors were measured using 2-frame PIV measurement system. The mean velocity fields and turbulent statistics including turbulent kinetic energy and vorticity were obtained by ensemble-averaging 400 instantaneous velocity fields. The free stream velocity was fixed at 0.6m/s and the corresponding Reynolds number was $9{\times}10^5$. The test sections were divided into two regions, three transverse sections of the wake region(Station -0.5767, -1, -3) and five longitudinal sections of the wake((Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6). In the wake region, large-scale longitudinal vortices of nearly same strength are symmetric with respect to the wake centerline and a relatively weak secondary vortex is formed near the waterline. With going downstream, the strength of longitudinal vortex is decreased and the wake region expands.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.

Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment (오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구)

  • Woo, Jung-Hui;Song, Young-Chae;Senthilkumar, Palaninaicker
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • A study on the elution characteristics of biostimulating agents (sulfate and nitrate) from biostimulants which are used for in-situ bioremediation for the coastal sediment contaminated with organic matter was performed. The biostimulating agents were mixed with the coastal sediment, and then massed the mixture into ball. Two kinds of ball type biostimulant were prepared by coating the ball surface with two different polymers, cellulose acetate and polysulfone. A granular type biostimulant (GTB) was also prepared by impregnating a granular activated carbon in the biostimulating agent solution. The image of scanning electron microscopy for the biostimulant coated with cellulose acetate (CAB) showed that the inner side of the coating layer consisted of irregular and bigger size of pores, and the surface layer had tight structure like beehive. For the biostimulant coated with polyfulfone (PSB), the whole coating layer had a fine structure without pore. The elution rate of the biostimulating agents for the CAB was higher than that for the PSB, and the elution rate for the GTB was considerably higher than that for the PSB in distilled water as well as in sea water. The elution rate of the biostimulating agents in turbulent water flow was about 3 times higher than that in standing water, and the elution rate of nitrate was higher than that of sulfate from the stimulating agents.