• Title/Summary/Keyword: Turbulent Jet

Search Result 460, Processing Time 0.029 seconds

Calculation of Turbulent Offset Jet (난류 Offset 분류에 관한 수치해석)

  • Lee, Woo-Jung;Kim, Kwang-Yong;Cho, Yong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1991
  • The paper discusses the problem of the flow over the backward facing step and the offset jet, which are calculated numerically. Standard k- .epsilon. model and its LPS modification are used as turbulence models. Hybrid central/upwind scheme and skew- upwind scheme are used as numerical schemes. The numerical scheme has a strong influence on the offset jet rather than the flow over backward facing step. The skew-upwind scheme gives good results in both cases. However, the k- .epsilon. model with LPS modification yields no remarkable improvements in the predictions of both flows. The skew-upwind scheme improves the prediction of reattachment length in the offset jet.

  • PDF

The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet (완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향)

  • Lee, Dae-Hee;Won, Se-Youl;Lee, Young-Min;Cho, Heon-No
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.

A New Blade Profile for Bidirectional Flow Properly Applicable to a Two-stage Jet Fan

  • Nishi, Michihiro;Liu, Shuhong;Yoshida, Kouichi;Okamoto, Minoru;Nakayama, Hiroyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • A reversible axial flow fan called jet fan has been widely used for longitudinal ventilation in road tunnels to secure a safe and comfortable environment cost-effectively. As shifting the flow direction is usually made by only switching the rotational direction of an electric motor due to heavy duty, rotor blades having identical aerodynamic performance for bidirectional flow should be necessary. However, such aerodynamically desirable blades haven't been developed sufficiently, since most of the related studies have been done from the viewpoint of unidirectional flow. In the present paper, we demonstrate a method to profile the blade section suitable for bidirectional flow, which is validated by studying the aerodynamic performances of rotor blades of a two-stage jet fan experimentally and numerically.

Extinction of Non-premixed methane Flame in Twin-Jet Counterflow (Twin-Jet 대향류에서 메탄 비예혼합화염의 소염 특성)

  • Noh, T.G.;Yang, S.Y.;Ryu, S.K.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.195-200
    • /
    • 2003
  • A two-dimensional "twin-jet counterflow" burner has been designed for the better understanding of the stability of turbulent flames. This flow system enables one to systematically investigate various effects on non-premixed flames, including the effects of curvature, negative strain, and non-premixed flame interactions. The objective of this study is comparing characteristics of extinction of non-premixed methane flames with that of non-premixed propane flames investigated previously. The extinction limit of non-premixed methane and propane flames can be extended compare to that for the conventional counterflow non-premixed flame because of the existence of petal shaped flame and have same structure. The hysteresis in transition between the petal shaped flame and the curved two-wing flames could be observed. We could find differences between non-premixed methane flame and non-premixe propane flame such as the position of one wing extinction and the regime of one wing extinction.

  • PDF

Experimental Study on the Characteristics of Micro Jet Flow Using Digital Microscopic Holography (디지털 현미경 홀로그래피 기법을 이용한 마이크로 액체 제트 유동에 관한 실험적 연구)

  • Lee, Haneol;Lee, Jaiho;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • In this study, the effect of injection pressure on the column diameter and droplet velocity of liquid jet with the weakly turbulent Rayleigh-like breakup mode is experimentally studied using digital microscopic holography (DMH). The injection nozzle has the diameter of $50{\mu}m$ and injection pressure is varied from 0.1 to 0.4 MPa. When the micro liquid jet is injected into still air, the double-pulsed holograms was recorded on a CCD sensor and numerically reconstructed in order to obtain well focused images. In this study, the liquid column diameter from $50{\mu}m$ orifice nozzle is shown to be changed slightly but the droplet velocity is increased proportionally as the injection pressure is increased.

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

Study on Two Phase Flow of Two Jets Existing Velocity Difference (속도차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.515-521
    • /
    • 1998
  • In this study the mixing process of two-phase flow which makes two jets existing vlocity difference are analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid pariticle with air and the velocity in the secondary jet is changed into three kinds velocities(0.60, 75m/s) The velocity vector field concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the velocity of secondary jet increases the solid particle recirculation zone becomes larger. Also solid particle concentration gets dense due to velocity decrement of particles.

  • PDF

4D-PTV(Dynamic 3D-PTV) Measurement on an Impinged Jet (4차원 입자영상유속계(다이나믹 3차원 입자영상유속계)에 의한 충돌분류측정)

  • Doh, Deog-Hee;Hwang, Tae-Gyu;Cho, Yong-Beom;Pyeon, Yong-Beom;Koji, Okamoto
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1767-1771
    • /
    • 2004
  • A 4D-PTV system was constructed. The measurement system consists of three high-speed high-definition cameras, Nd-Yag laser(10mJ, 2000fps) and a host computer. The GA-3D-PTV algorithm was used to extract three-dimensional velocity vectors in the measurement volume. A horizontal impinged jet flow was measured with the constructed system. The Reynolds number is about 40,000. Spatial temporal evolution of the jet flow was examined in detail and physical properties such as spatial distributions of vorticity and turbulent kinetic energy were obtained with the constructed system.

  • PDF

A Numerical Study of Flow and Heat Transfer on Two Dimensional Dual Impinging Jet on Nozzle to Plate Distance (이차원 이중 충돌제트에서 노즐과 충돌면 간격에 따른 유동 및 열전달에 관한 수치적 연구)

  • Kim, Sang-Kil;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2804-2809
    • /
    • 2008
  • Experimental results and numerical computations were conducted to investigate the effect of the confined wall on the flow and heat transfer characteristics for a two-dimensional impinging jet. Experimental results and Numerical solutions were obtained by using the particle image velocimetry and the commercial CFD code (CFX 11), respectively. The parameters studied were jet Reynolds number (Re=5,000), conditions of confined wall (unventilate), nozzle to plate spacings ($H/W=1{\sim}16$), and nozzle to nozzle spacing (S/W=6). Experimental and numerical results were agreed well with each other. The maximum heat transfer point was found variation of nozzle to plate spacings.

  • PDF

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF