• Title/Summary/Keyword: Turbine Effect

Search Result 897, Processing Time 0.023 seconds

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator (유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구)

  • Ro, Kyoung-Chul;Oh, Jae-Won;Kim, Gil-won;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine (항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Analysis for Nonlinear Turbine Effect of Inclined OWC Wave Energy Converter (경사형 진동수주 파력발전장치의 비선형 터빈효과의 분석)

  • Kim, J.S.;Nam, B.W.;Park, S.W.;Kim, K.H.;Shin, S.H.;Hong, K.Y.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.59-60
    • /
    • 2018
  • The oscillating-water-column wave energy converter represents the complex physical characteristics associated with the water column, turbines, generator, and power converter. This study focuses on the derivation of the physical relationship between the water column and turbine based on the 1/ 4 scale model test. The aerodynamic characteristics of the OWC ducted turbine were simulated using an orifice. The turbine effect, a key element in the OWC-chamber performance evaluation, can be represented by the flow rate and pressure drop through the orifice. The turbine effect of OWC-WEC was confirmed to have a non-linear relationship from the measured flow rate and pressure drop in the model test.

  • PDF

Predicting the Morton Effect in a Steam Turbine with Sensitivity Vector (민감도 벡터를 이용한 스팀 터빈의 Morton Effect 발생 예측)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Junho Suh;Shinhun Kang;Seryong Kim
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.39-46
    • /
    • 2024
  • The Morton effect (ME) is an instability phenomenon occurring in rotating machineries supported by fluid film bearings and is induced by the thermal deformation of the overhung mass, which is a part of the rotating shaft. Herein, we describe the ME during the high-speed balancing test of a 20 MW class steam turbine. Additionally, to predict the rotating speed at which the ME occurs, we apply the sensitivity vector theory for the steam turbine. During the operation of the steam turbine, we observe a continuous increase in vibration and hysteresis near the rated speed, which is typical of the ME. Increasing the temperature of the lubricating oil supplied to the bearings from 40 to 60℃ suppresses the occurrence of the ME. The rotordynamic analysis for the steam turbine suggests the existence of a mode in which the overhung mass undergoes significant deformation near the rated speed, and we presume that such a mode will increase the occurrence of the ME. The predicted rotating speed of ME occurrence, obtained through the sensitivity vector method, correlates with the test results. Moreover, increasing the temperature of the supplied lubricating oil mitigates the occurrence of ME by reducing the sensitivity between the temperature deviation vector and unbalance mass vector.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model (강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰)

  • Lee, Yun-Woo;Choi, Jun-Ho;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance (터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향)

  • Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Jung, Yong-Wun;Hwang, In-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2008
  • We have simulated the performance of a simple engine model with a gas turbine engine simulation program based on CFD. 2-dimensional Navier-Stokes code for the viscous flow was applied to simulate a compressor and a turbine, and the chemical equilibrium code with the lumped method was applied to simulate the combustor. Unsteady-flow phenomenon between rotor and stator of the compressor and the turbine was analyzed by steady mixing-plane method. In this way, the influence of the turbine blade pitch on the engine was investigated. It was shown that the compressor is operated at more higher pressure conditions as narrower the pitch distance of the turbine.

Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants (스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정)

  • Na, Sang-Soo;Chung, Jae-Won;Bong, Suk-Kun;Jun, Dong-Ki;Kim, Yun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

Wind Tunnel Test for Scaled Wind Turbine Model (Scale effect correction) (축소형 풍력터빈 풍동시험-축소효과 보상기법)

  • Cho, Tae-Hwan;Kim, Yang-Won;Park, Young-Min;Chang, Byeong-Hee
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • Wind tunnel test for the 12% scaled model of NREL Phase VI wind turbine was conducted in KARI low speed wind tunnel for $2006{\sim}2007$. The 1st and 2nd test was designed to find out the wind tunnel test method for the blade manufacturing accuracy and surface treatment method by using the composite and aluminum blades. And the 3rd test was designed to study the scale effect. The chord extension method which was used for Bo-105 40% scaled model was adapted for scale effect correction. Test results shows that the chord extension method works well for the torque slope but the maximum torque for scaled model is about 8% below than the real scale model. New correction method to correct this offset was proposed.

  • PDF