• Title/Summary/Keyword: Tunneling spectroscopy

Search Result 94, Processing Time 0.028 seconds

Electronic and Optical Properties of amorphous and crystalline Tantalum Oxide Thin Films on Si (100)

  • Kim, K.R.;Tahir, D.;Seul, Son-Lee;Choi, E.H.;Oh, S.K.;Kang, H.J.;Yang, D.S.;Heo, S.;Park, J.C.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.382-382
    • /
    • 2010
  • $TaO_2$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility in achieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFETchannel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. The atomic structure of amorphous and crystalline Tantalum oxide ($TaO_2$) gate dielectrics thin film on Si (100) were grown by utilizing atomic layer deposition method was examined using Ta-K edge x-ray absorption spectroscopy. By using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS) the electronic and optical properties was obtained. In this study, the band gap (3.400.1 eV) and the optical properties of $TaO_2$ thin films were obtained from the experimental inelastic scattering cross section of reflection electron energy loss spectroscopy (REELS) spectra. EXAFS spectra show that the ordered bonding of Ta-Ta for c-$TaO_2$ which is not for c-$TaO_2$ thin film. The optical properties' e.g., index refractive (n), extinction coefficient (k) and dielectric function ($\varepsilon$) were obtained from REELS spectra by using QUEELS-$\varepsilon$(k, $\omega$)-REELS software shows good agreement with other results. The energy-dependent behaviors of reflection, absorption or transparency in $TaO_2$ thin films also have been determined from the optical properties.

  • PDF

Spectroscopic Studies on Electroless Deposition of Copper on Hydrogen-Terminated Si(111) Surface in NH4F Solution Containing Cu(II) Ions

  • Lee, In-Churl;Bae, Sang-Eun;Song, Moon-Bong;Lee, Jong-Soon;Paek, Se-Hwan;J.Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.167-171
    • /
    • 2004
  • The electroless deposition of copper on the hydrogen-terminated Si(111) surface was investigated by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning tunneling microscopy (STM), and energy-dispersive spectroscopy (EDS). The hydrogen-terminated Si(111) surface prepared was stable under air atmosphere for a day or more. It was found from ATR-FTIR that two bands centered at 2000 and 2260 $cm^{-1}$ appeared after the H-Si(111) surface was immersed in 40% $NH_4F$ solution containing 10 mM $Cu^{2+}$. On the other hand, STM image included the copper islands with a height of 5 nm and a diameter of 10-20 nm. The EDS data displayed the presence of copper, silicon and oxygen species. The results were rationalized in terms of the redox reaction of surface Si atoms and $Cu^{2+}$ ions in solutions, which are changed into $Si(OH)_x(F)_y$ containing $SiF_6^{2-}$ ions and neutral copper islands.

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

A Study for the Ohmic Contact of High Resistivity p-Cd$_{80}Zn_[20}$Te Semiconductor (고 비저항 p-Cd$_{80}Zn_[20}$Te의 저항성 전극형성에 관한 연구)

  • 최명진;왕진식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.338-341
    • /
    • 1997
  • According to reports, it is impossible to make Ohmic Contact with high resistivity p type CdTe or CdZnTe semiconductor theoretically. But it is in need of making Ohmic Contact to fabricate semiconductor radiation detector By electroless deposition method using gold chloride solution, we made Ohmic Contact of Au and p-Cd$_{80}$Zn$_{20}$Te which grown by High Presure Bridgman Method in Aurora Technologies Corporation. We investigated the interface with Rutherford Backscattering Spectrometry and Auger electron spectroscopy. And we evaluated the degree of Ohmic Contact for the Au/CdZnTe interface by the I/V characteristic curve. As a result, we concluded that it showed excellent Ohmic Contact property by tunneling mechanism through the interface.e.

  • PDF

Electrical and Chemical characteristics of Zn(II)-Porphyrin Langmuir-Blodgett(LB) Films (Zn(II)-Porphyrin LB막의 전기, 화학적 특성에 관한 연구)

  • Koo, Ja-Ryong;Lee, Ho-Sik;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.752-755
    • /
    • 2002
  • Since Metallo-Porphyrin (MP) is very interesting compound due to its unique electronic and redox properties and it is also chemically and thermally stable, MP has been studied for potential memory and switching devices. In this study, thin films of 5,10,15,20 - Tetrakis - Octadecyloxymethylphenyl - Porphyrin - Zn(II) (Zn-TPP) were prepared by the Langmuir-Blodgett (LB) method and characterized by using UV/vis absorption spectroscopy and cyclic voltammetry. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was $135{\AA}^2$/molecule. The current-voltage (I-V) characteristics of these films were investigated.

  • PDF

Rapid Thermal Nitridation of $SiO_2$ (급속 열처리에 의한 $SiO_2$ 의 질화)

  • 이용현;왕진석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.709-715
    • /
    • 1990
  • SiO2 films were nitrided by tungsten-halogen heated rapid thermal annealing in ammonia gas at temperatures of 900-1100\ulcorner for 15-180sec. The nitroxide films were analyzed using Auger electron spectroscopy. MIS caapcitors were fabricated using these films as gate insulators. I-V and C-V characteristics of MIS capacitors were investigated. The AES depth profiles of nitroxide film show that the nitrogen rich layer is, at the early stage of nitridation, formed at the surface of nitroxide film and near the interface between nitroxide and silicon. Nitridation of SiO2 makes the film have a larger effective average refractive index. The thermal nitridation of SiO2 on silicon causes the flatband voltage shift due to the change of the fixed charge density. It is found that the dominant conduction mechanism in nitroxide is Fowler-Nordheim tunneling. Rapid thermal nitridation of 200\ulcornerSiO2 on silicon results in an improvement in the dielectric breakdown electric field.

  • PDF

Effect of Dodecane on the Surface Structure and the Electronic Properties of Pentacene on Modified Si (001)

  • Kim, Beom-sik;Kang, Hee Jae;Seo, Soonjoo;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.25 no.2
    • /
    • pp.28-31
    • /
    • 2016
  • The structural and the electronic properties of pentacene on modified Si (001) were investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and ultraviolet photoelectron spectroscopy (UPS). Dodecane was used to modify Si (001) substrates and then pentacene was deposited on dodecane/Si (001). Our STM results show a uniform distribution of aggregated dodecane molecules all over the clean Si (001). The surface structure of pentacene on dodecaene/Si (001) examined by AFM is analogous to that of pentacene on $SiO_2$. The UPS data showed that the work function of pentacene on clean Si (001) and pentacene on modified Si (001) with dodecane was 6.41 and 5.57 eV, respectively. Our results prove that dodecane results in the work function difference between pentacene on clean Si (001) and pentacene on dodecane/Si (001).

Electrochemical Characteristics of 5,10,15,20-Tetrakis-Octadecyloxymethylphenyl-Porphyrin-Zn(II) Langmuir-Blodgett (LB) Films

  • Koo, Ja-Ryong;Choi, Don-Soo;Kim, Young-Kwan;Kim, Jung-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.58-62
    • /
    • 2001
  • Since Metallo-Porphyrin (MP) is very interesting compound due to its unique electronic and redox properties and it is also chemically and thermally stable, MP has been studied for potential memory and switching devices. In this study, thin films of 5,10,15,20-Tetrakis-Octadecyloxymethylphenyl-Porphyrin-Zn(II) were prepared by the Langmuir-Blodgett (LB) method and characterized by using UV/vis absorption spectroscopy and cyclic voltammetry. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was 135 ${\AA}^2$/molecule. The current-voltage (I-V) characteristics of these films were investigated. Further details on the electrical properties of Porphyrin-Zn(II) derivative films will be discussed.

  • PDF