DOI QR코드

DOI QR Code

Effect of Dodecane on the Surface Structure and the Electronic Properties of Pentacene on Modified Si (001)

  • Kim, Beom-sik (Department of Physics, Chungbuk National University) ;
  • Kang, Hee Jae (Department of Physics, Chungbuk National University) ;
  • Seo, Soonjoo (The advanced nanosurface research group, Korea Basic Science Institute) ;
  • Park, Nam Seok (Department of Semiconductor Electroengineering, Chungbuk Health & Science University)
  • Received : 2016.03.23
  • Accepted : 2016.03.31
  • Published : 2016.03.30

Abstract

The structural and the electronic properties of pentacene on modified Si (001) were investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and ultraviolet photoelectron spectroscopy (UPS). Dodecane was used to modify Si (001) substrates and then pentacene was deposited on dodecane/Si (001). Our STM results show a uniform distribution of aggregated dodecane molecules all over the clean Si (001). The surface structure of pentacene on dodecaene/Si (001) examined by AFM is analogous to that of pentacene on $SiO_2$. The UPS data showed that the work function of pentacene on clean Si (001) and pentacene on modified Si (001) with dodecane was 6.41 and 5.57 eV, respectively. Our results prove that dodecane results in the work function difference between pentacene on clean Si (001) and pentacene on dodecane/Si (001).

Keywords

References

  1. H. E. Katz and Z Bao, J. Phys. Chem. 104, 671 (2000). https://doi.org/10.1021/jp992853n
  2. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004). https://doi.org/10.1021/cm049473l
  3. C. Walduf, C. J. Brabec, P. Schilinsky, J. Hauch, and C. J. Brabec, Thin Solid Films 451, 503 (2004).
  4. B. de Boer, A. Hadipur, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005). https://doi.org/10.1002/adma.200401216
  5. S. H. Kim, J. H. Lee, S. C. Lim, Y. S. Yang, and T. H. Zyung, Jpn. J. Appl. Phys. Part 2, 43, L60 (2004). https://doi.org/10.1143/JJAP.43.L60
  6. K. Demirkan, A. Mathew, C. Weiland, Y. Yao, A. M. Rawlett, J. M. Tour, and R. L. Opila, J. Chem. Phys. 128, 074705 (2008). https://doi.org/10.1063/1.2832306
  7. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998). https://doi.org/10.1063/1.121940
  8. J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D. Kim, and K. Cho, Appl. Phys. Lett. 91, 112111 (2007). https://doi.org/10.1063/1.2778548
  9. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004). https://doi.org/10.1038/nmat1105
  10. C. Huang, H. E. Katz, and J. E. West, Langmuir 23, 13223 (2007). https://doi.org/10.1021/la702409m
  11. J. E. Northrup, Phys. Rev. B 66, 121404 (2202). https://doi.org/10.1103/PhysRevB.66.121404
  12. R. B. Campbell and J. M. Robertson, Acta. Crystallogr. 15, 289 (1962). https://doi.org/10.1107/S0365110X62000699
  13. M. Meuris, P. W. Mertens, A. Opdebeek, H. F. Schmidt, M. Depas, G. Vereecke, M. M. Heyns, and A. Phillipossian, Solid State Technol., 38, 109 (1995).
  14. J. R. Lu, R. K. Thomas, B. P. Binks, P. D. I. Fletcher, and J. Penfold, J. Phys. Chem. 99, 4113 (1995). https://doi.org/10.1021/j100012a036
  15. S. Yim, N. Sonwalka, and N. Saka, J. Comput. Aided Mater. Des., 6:69 (1999). https://doi.org/10.1023/A:1008658828194