• 제목/요약/키워드: Tunneling device

검색결과 190건 처리시간 0.029초

ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl 구조에서 온도 변화에 따른 전압-전류 특성 (Current-voltage characteristics of ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl device with temperature variation)

  • 김상걸;정동회;홍진웅;정택균;김태완;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.114-117
    • /
    • 2002
  • We have studied the dependence of current-voltage characteristics of Organic Light Emitting Diodes(OLEDs) on temperature-dependent variation. The OLEDs have been based on the molecular compounds. N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1, 1'- biphenyl-4, 4'-diamine (TPD) as a hole transport. tris(8-hydroxyquinolinoline) aluminum (III) ($Alq_3$) as an electron transport and Poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) as a buffer layer. The current-voltage characteristics were measured in the temperature range of 10K and 300K. A conduction mechanism in OLEDs has been interpreted in terms of space-charge-limited current(SCLC) and tunneling region.Ā᐀會Ā᐀衅?⨀頱岒ᄀĀ저會Ā저?⨀⡌ឫഀĀ᐀會Ā᐀㡆?⨀쁌ឫഀĀ᐀會Ā᐀遆?⨀郞ග瀀ꀏ會Ā?⨀〲岒ऀĀ᐀會Ā᐀䁇?⨀젲岒Ā㰀會Ā㰀顇?⨀끩Ā㈀會Ā㈀?⨀䡪ഀĀ᐀會Ā᐀䡈?⨀Ā᐀會Ā᐀ꁈ?⨀硫Ā저會Ā저?⨀샟ගऀĀ저會Ā저偉?⨀栰岒ഀĀ저會Ā저ꡉ?⨀1岒ഀĀ저會Ā저J?⨀惝ග؀Ā؀會Ā؀塊?⨀ග䈀Ā切

  • PDF

Potential Dependence of Electrochemical Etching Reaction of Si(111) Surface in a Fluoride Solution Studied by Electrochemical and Scanning Tunneling Microscopic Techniques

  • Bae, Sang-Eun;Youn, Young-Sang;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.330-335
    • /
    • 2020
  • Silicon surface nanostructures, which can be easily prepared by electrochemical etching, have attracted considerable attention because of its useful physical properties that facilitate application in diverse fields. In this work, electrochemical and electrochemical-scanning tunneling microscopic (EC-STM) techniques were employed to study the evolution of surface morphology during the electrochemical etching of Si(111)-H in a fluoride solution. The results exhibited that silicon oxide of the Si(111) surface was entirely stripped and then the surface became hydrogen terminated, atomically flat, and anisotropic in the fluoride solution during chemical etching. At the potential more negative than the flat band one, the surface had a tendency to be eroded very slowly, whereas the steps of the terrace were not only etched quickly but the triangular pits also deepened on anodic potentials. These results provided information on the conditions required for the preparation of porous nanostructures on the Si(111) surface, which may be applicable for sensor (or device) preparation (Nanotechnology and Functional Materials for Engineers, Elsevier 2017, pp. 67-91).

동종 접합 InGaAs 수직형 Fin TFET의 온도 의존 DC 특성에 대한 연구 (Temperature-dependent DC Characteristics of Homojunction InGaAs vertical Fin TFETs)

  • 백지민;김대현
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.275-278
    • /
    • 2020
  • In this study, we evaluated the temperature-dependent characteristics of homojunction InGaAs vertical Fin-shaped Tunnel Field-Effect Transistors (Fin TFETs), which were fabricated using a novel nano-fin patterning technique in which the Au electroplating and the high-temperature InGaAs dry-etching processes were combined. The fabricated homojunction InGaAs vertical Fin TFETs, with a fin width and gate length of 60 nm and 100 nm, respectively, exhibited excellent device characteristics, such as a minimum subthreshold swing of 80 mV/decade for drain voltage (VDS) = 0.3 V at 300 K. We also analyzed the temperature-dependent characteristics of the fabricated TFETs and confirmed that the on-state characteristics were insensitive to temperature variations. From 77 K to 300 K, the subthreshold swing at gate voltage (VGS) = threshold voltage (VT), and it was constant at 115 mV/decade, thereby indicating that the conduction mechanism through band-to-band tunneling influenced the on-state characteristics of the devices.

Al/$VO_x$/Al 소자 구조에서 스퍼터된 바나듐 산화막의 전기적 특성 (Electrical properties of sputtered vanadium oxide thin films in Al/$VO_x$/Al device structure)

  • 박재홍;최용남;최복길;최창규;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.460-463
    • /
    • 2000
  • The current-voltage characteristics of the sandwich system at different annealing temperatures and different bias voltages have been studied. In order to prepare the Al/V$O_X$/Al sandwich devices structure, thin films of vanadium oxide(V$O_X$) was deposited by r.f. magnetron sputtering from $V_2$$O_5$ target in 10% gas mixture of argon and oxygen, and annealed during lhour at different temperatures in vacuum. Crystall structure, surface morphology, and thickness of films were characterized through XRD, SEM and I-V characteristics were measured by electrometer. The films prepared below 20$0^{\circ}C$ were amorphous, and those prepared above 300 $^{\circ}C$were polycrystalline. At low fields electron injected to conduction band of vanadium oxide and formed space charge, current was limited by trap. Conduction mechanism at mid fields due to Schottky emission, while at high fields it changed to Fowler-Nordheim tunneling effects.

  • PDF

Cell Characteristics of a Multiple Alloy Nano-Dots Memory Structure

  • Kil, Gyu-Hyun;Lee, Gae-Hun;An, Ho-Joong;Song, Yun-Heup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.240-240
    • /
    • 2010
  • A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (~5.2 eV) and extremely high dot density (${\sim}\;1.2{\times}10^{13}/cm^2$) was fabricated. Its structural effect for multiple layers was evaluated and compared to one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with 2-4 multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler-Nordheim (FN)-tunneling could be a candidate structure for future flash memory.

  • PDF

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

쇼트키 장벽 관통 트랜지스터 구조를 적용한 실리콘 나노점 부유 게이트 비휘발성 메모리 특성 (Characteristics of Si Floating Gate Nonvolatile Memory Based on Schottky Barrier Tunneling Transistor)

  • 손대호;김은겸;김정호;이경수;임태경;안승만;원성환;석중현;홍완식;김태엽;장문규;박경완
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.302-309
    • /
    • 2009
  • 쇼트키 장벽 관통 트랜지스터에 실리콘 나노점을 부유 게이트로 사용하는 비휘발성 메모리 소자를 제작하였다. 소스/드레인 영역에 어븀 실리사이드를 형성하여 쇼트키 장벽을 생성하였으며, 디지털 가스 주입의 저압 화학 기상 증착법으로 실리콘 나노점을 형성하여 부유 게이트로 이용하였다. 쇼트키 장벽 관통 트랜지스터의 동작 상태를 확인하였으며, 게이트 전압의 크기 및 걸어준 시간에 따른 트랜지스터의 문턱전압의 이동을 관찰함으로써 비휘발성 메모리 특성을 측정하였다. 초기 ${\pm}20\;V$의 쓰기/지우기 동작에 따른 메모리 창의 크기는 ${\sim}5\;V$ 이었으며, 나노점에 충분한 전하 충전을 위한 동작 시간은 10/50 msec 이었다. 그러나 메모리 창의 크기는 일정 시간이 지난 후에 0.4 V로 감소하였다. 이러한 메모리 창의 감소 원인을 어븀 확산에 따른 결과로 설명하였다. 본 메모리 소자는 비교적 안정한 쓰기/지우기 내구성을 보여주었으나, 지속적인 쓰기/지우기 동작에 따라 수 V의 문턱전압 이동과 메모리 창의 감소를 보여주었다. 본 실험 결과를 가지고 실리콘 나노점 부유게이트가 쇼트키 장벽 트랜지스터 구조에 접목 가능하여 초미세 비휘발성 메모리 소자로 개발 가능함을 확인하였다.

Two-Bit/Cell NFGM Devices for High-Density NOR Flash Memory

  • Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.11-20
    • /
    • 2008
  • The structure of 2-bit/cell flash memory device was characterized for sub-50 nm non-volatile memory (NVM) technology. The memory cell has spacer-type storage nodes on both sidewalls in a recessed channel region, and is erased (or programmed) by using band-to-band tunneling hot-hole injection (or channel hot-electron injection). It was shown that counter channel doping near the bottom of the recessed channel is very important and can improve the $V_{th}$ margin for 2-bit/cell operation by ${\sim}2.5$ times. By controlling doping profiles of the channel doping and the counter channel doping in the recessed channel region, we could obtain the $V_{th}$ margin more than ${\sim}1.5V$. For a bit-programmed cell, reasonable bit-erasing characteristics were shown with the bias and stress pulse time condition for 2-bit/cell operation. The length effect of the spacer-type storage node is also characterized. Device which has the charge storage length of 40 nm shown better ${\Delta}V_{th}$ and $V_{th}$ margin for 2-bit/cell than those of the device with the length of 84 nm at a fixed recess depth of 100 nm. It was shown that peak of trapped charge density was observed near ${\sim}10nm$ below the source/drain junction.

Effects of the length of linkers in metal-azobenzene-metal junction on transmission and ON/OFF ratio

  • Yeo, Hyeonwoo;Kim, Han Seul;Kim, Yong-Hoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.499-505
    • /
    • 2017
  • Photoisomerizing molecules which can transform their structure by the light irradiation have great deal for the application of photo-switching devices. And azobenzene is the representive type of the photoisomerizing molecules. It can transform their trans- structures into cis- structure as the light for certain wave lengths they receive. This property shows the potential of ON/OFF switching functionalization which can be used into the nano scale photo switch. Furthermore, many studies are interested in the organic linkers that connect the azobenzene and metal electrodes. We used S, $CH_2S$, $(CH_2)_4S$ as the linker to watch the influence of linkers for electronic properties. So We suggest a photoswitching device based on the vertical junction using the first-principles calculations with density functional theory and non-equilibrium Greens function (NEGF). By analyzing the electronic structure and tunneling current caused by the structural difference of the system between cis- and trans- azobenzene, the difference in switching mechanism, ON/OFF ratio and transmission will be watched as the linker changes. And finally We will suggest which linker would be the better for the optimal device architecture which can achieve high control of the ON/OFF photocurrent ratio. This result will show the potential of azobenzene-based photoswitch and provide the critical insight in constructing the optimal device architecture.

  • PDF

Poly(3-hexylthiophene) 발광소자의 금속전극 의존성 (Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device)

  • 서부완;김주승;김형곤;이경섭;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF