DOI QR코드

DOI QR Code

Potential Dependence of Electrochemical Etching Reaction of Si(111) Surface in a Fluoride Solution Studied by Electrochemical and Scanning Tunneling Microscopic Techniques

  • Bae, Sang-Eun (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Youn, Young-Sang (Department of Chemistry, Yeungnam University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2020.04.08
  • Accepted : 2020.04.28
  • Published : 2020.11.30

Abstract

Silicon surface nanostructures, which can be easily prepared by electrochemical etching, have attracted considerable attention because of its useful physical properties that facilitate application in diverse fields. In this work, electrochemical and electrochemical-scanning tunneling microscopic (EC-STM) techniques were employed to study the evolution of surface morphology during the electrochemical etching of Si(111)-H in a fluoride solution. The results exhibited that silicon oxide of the Si(111) surface was entirely stripped and then the surface became hydrogen terminated, atomically flat, and anisotropic in the fluoride solution during chemical etching. At the potential more negative than the flat band one, the surface had a tendency to be eroded very slowly, whereas the steps of the terrace were not only etched quickly but the triangular pits also deepened on anodic potentials. These results provided information on the conditions required for the preparation of porous nanostructures on the Si(111) surface, which may be applicable for sensor (or device) preparation (Nanotechnology and Functional Materials for Engineers, Elsevier 2017, pp. 67-91).

Keywords

References

  1. A. Munoz-Noval, K. Fukami, A. Koyama, D. Gallach, D. Hermida-Merino, G. Portale, A. Kitada, K. Murase, T. Abe, S. Hayakawa, T. Sakka, Electrochem. Comm., 2016, 71, 9-12. https://doi.org/10.1016/j.elecom.2016.07.013
  2. S. H. Lee, J. S. Kang, D. Kim, Materials, 2018, 11(12), 2557. https://doi.org/10.3390/ma11122557
  3. S. Chen, S. S. Thind, A. Chen, Electrochem. Comm., 2016, 63, 10-17. https://doi.org/10.1016/j.elecom.2015.12.003
  4. I. Oh, J. Kye, S. Hwang, Nano Letters, 2012, 12(1), 298-302. https://doi.org/10.1021/nl203564s
  5. S.-J. Kim, J.-Y. Park, S.-H. Lee, S.-H. Yi, J. Physics D:Applied Physics, 2000, 33(15), 1781-84. https://doi.org/10.1088/0022-3727/33/15/305
  6. Y. Dahman. In Nanotechnology and Functional Materials for Engineers; Dahman, Y., Ed.; Elsevier:2017; pp 67-91.
  7. D.-I. Kim, C.-W. Lee, Bull. Korean Chem. Soc., 1995, 16(11), 1019-23.
  8. D. Kim, J. Kang, T. Wang, H. G. Ryu, J. M. Zuidema, J. Joo, M. Kim, Y. Huh, J. Jung, K. H. Ahn, K. H. Kim, M. J. Sailor, Advanced Materials, 2017, 29(39), 1703309. https://doi.org/10.1002/adma.201703309
  9. J. Wang, T. Kumeria, M. T. Bezem, J. Wang, M. J. Sailor, ACS Appl Mater Interfaces, 2018, 10(4), 3200-09. https://doi.org/10.1021/acsami.7b09071
  10. S.-H. Lee, C.-W. Lee, J. Korean Electrochem. Soc., 2000, 3, 39-43. https://doi.org/10.5229/JKES.2000.3.1.039
  11. M. Aliaghayee, H. G. Fard, A. Zandi, J. Electrochem. Sci. Technol., 2016, 7(3), 218-27. https://doi.org/10.5229/JECST.2016.7.3.218
  12. X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J.-G. Zhang, J. Liu, Nature Comm., 2014, 5, 4105. https://doi.org/10.1038/ncomms5105
  13. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, M. Ue, J. Electrochem. Sci. Technol, 2015, 6(2), 35-49. https://doi.org/10.5229/JECST.2015.6.2.35
  14. C.-W. Lee, D.-I. Kim, M.-K. Oh, Bull. Korean Chem. Soc., 1993, 14, 162-63.
  15. S. N. Sohimee, Z. Hassan, N. Mahmoud Ahmed, L. W. Foong, Q. Hock Jin, J. Physics: Conference Series, 2018, 1083, 012034.
  16. S. E. Bae, J. H. Yoon, C. W. J. Lee, Surf. Sci., 2008, 602(6), 1185-90. https://doi.org/10.1016/j.susc.2008.01.011
  17. S.-E. Bae, J.-H. Yoon, C.-W. J. Lee, I. C. Jeon, Electrochim. Acta, 2008, 53(21), 6178-83. https://doi.org/10.1016/j.electacta.2008.01.043
  18. S. E. Bae, J. H. Yoon, C. W. J. Lee, J. Phys. Chem. C, 2008, 112(5), 1533-38. https://doi.org/10.1021/jp076673m
  19. M. F. Faggin, S. K. Green, I. T. Clark, K. T. Queeney, M. A. Hines, J. Am. Chem. Soc., 2006, 128(35), 11455-62. https://doi.org/10.1021/ja062172n
  20. P. Allongue, C. H. de Villeneuve, S. Morin, R. Boukherroub, D. D. M. Wayner, Electrochim. Acta, 2000, 45(28), 4591-98. https://doi.org/10.1016/S0013-4686(00)00610-1
  21. P. Allongue, V. Costa?Kieling, H. Gerischer, J. Electrochem. Soc., 1993, 140(4), 1018-26. https://doi.org/10.1149/1.2056190
  22. S.-E. Bae, C.-W. Lee, J. Korean Electrochem. Soc., 2002, 5, 111-16. https://doi.org/10.5229/JKES.2002.5.3.111
  23. J. Salonen, E. Makila, Advanced Materials, 2018, 30(24), 1703819. https://doi.org/10.1002/adma.201703819
  24. T. Bitzer, M. Gruyters, H. J. Lewerenz, K. Jacobi, Applied Physics Letters, 1993, 63(3), 397-99. https://doi.org/10.1063/1.110054
  25. H. Gerischer, M. Lubke, Ber. Bunsenges. Phys. Chem., 1987, 91(4), 394-98. https://doi.org/10.1002/bbpc.19870910432
  26. K. Kaji, S. L. Yau, K. Itaya, J. Applied Physics, 1995, 78(9), 5727-33. https://doi.org/10.1063/1.359633
  27. S. L. Yau, K. Kaji, K. Itaya, Applied Physics Letters, 1995, 66(6), 766-68. https://doi.org/10.1063/1.114087
  28. P. Allongue, V. Kieling, H. Gerischer, Electrochim. Acta, 1995, 40 (10), 1353-60. https://doi.org/10.1016/0013-4686(95)00071-L
  29. S. E. Bae, M. K. Oh, N. K. Min, S. H. Paek, S. I. Hong, C. W. J. Lee, Bull. Korean Chem. Soc., 2004, 25(12), 1822-28. https://doi.org/10.5012/bkcs.2004.25.12.1822
  30. J.-N. Chazalviel, F. Maroun, F. Ozanam J. Electrochem. Soc., 2004, 151(2), E51-E55.