• Title/Summary/Keyword: Tunneling Electron

Search Result 182, Processing Time 0.032 seconds

Investigation of Tunneling Thickness of Fe-MgF2 Glanular Film for Single Electron Transistor Operation (단전자트랜지스터 동작을 위한 Fe-MgF2그래뉼라 필름의 두께에 대한 조사)

  • Byun, Beommo;Takayuki, Gakashi;Fukuchi, Atsushi;Masashi, Arita;Yasuo, Takahashi;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.477-478
    • /
    • 2019
  • We have investigated the experiments in which fabrication and characterization of single-electron transistors were conducted due to easy fabrication and high functionality. In the Fe-MgF2 granular film, in which Fe grains are distributed between insulators instead of the conventional quantum dots, it can be easily fabricated by EB deposition alone, and various output values can be expected by applying two or more gate voltages. The tunneling thickness of the film for single-electron operation was investigated and it was confirmed that the tunneling occurred at 2.1 nm.

  • PDF

Recent Development of MRAM Technology

  • Miyazaki, T.;Ando, Y.;Kubota, H.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2003
  • Three topics which are related to technologies for developing of large capacity MRAM over Gbits are reviewed. First, it is stressed that inelastic-electron-tunnel-tunneling spectroscopy(IETS) is a powerfull method to investigate the interface state between magnetic electrodes and insulator. Second, magnetic tunnel junctions with small bias voltage dependence are introduced. Finally, fabrication method of carbon masks for very small magnetic tunnel junctions is demonstrated. These three topics were presented at 47^{th} MMM 2002 conference and each paper will appear in the proceedings.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film (Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상)

  • Chung, Sang-Geun;Kim, Yoon-Kyeom;Shin, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Pseudogap behavior in interlayer tunneling spectroscopy in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$

  • Bae Myung-Ho;Choi Jae-Hyun;Lee Hu-Jong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A pseudogap in the normal-state quasiparticle density of states of $high-T_c$ superconductors has been revealed in many different kinds of experiments. The existence of the pseudogap and the superconducting gap, and the correlation between them has attracted considerable attention because they are believed to be a key to understanding the mechanism of the $high-T_c$ superconductivity. The interlayer tunneling spectroscopy, excluding the surface-dependent effect, is one of the most accurate means to examine the electron spectral characteristics both in the superconducting and the normal states. In this study, a new constant-temperature intrinsic tunneling spectroscopic technique, excluding the overheating effect using the in-situ temperature monitoring combined with the digital proportional-integral-derivative control, is introduced. The implication on the $high-T_c$ superconductivity of the detailed temperature dependencies of the observed spectral weight in $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}\;high-T_c$ material for overdoped and underdoped levels is discussed.

  • PDF

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

Electron Emission Characteristic of Porous Poly-Silicon Emitter as a Oxidation process (산화공정에 따른 Porous Poly-Silicon Emitter의 방출특성 조사)

  • 제병길;배성찬;최시영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.722-726
    • /
    • 2003
  • 본 논문에서는 Porous poly-silicon cold cathode에 의해 전자를 방출하는 Ballistic electron surface-emitting display(BSD)의 전계방출 특성을 실험했다. BSD는 nanocrystalline을 둘러싼 산화막을 multi-tunneling한 전자에 의해 발광이 되는 mechanism이기 때문에 산화막의 두께를 변수로 두어 특성을 실험했다. 900℃에서 1시간에서 3시간까지 30분 간격으로산화 반응을 진행하였으며, leakage current와 emission current의 비로 효율을 나타내었을 때 1시간 30분 동안 산화 반응을 한 시료가 가장 좋은 특성을 나타내었다.

  • PDF

Electron Field Emission for a Cylindrical Emitter of Single Carbon Nanotube

  • Lee, Youn-Ju;Kim, Chang-Duk;Lee, Hyeong-Rag
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.764-767
    • /
    • 2007
  • We investigated the field emission of single carbon nanotube including the anode effect by calculating the tunneling probability of an electron. The experimental results from this study were in agreement with our theoretical calculations. The constant enhancement factor was calculated using an approximation of the potential barrier.

  • PDF

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.