• Title/Summary/Keyword: Tunnel oxide

Search Result 135, Processing Time 0.028 seconds

Electrical characteristic of stacked $SiO_2/ZrO_2$ for nonvolatile memory application as gate dielectric (비휘발성 메모리 적용을 위한 $SiO_2/ZrO_2$ 다층 유전막의 전기적 특성)

  • Park, Goon-Ho;Kim, Kwan-Su;Oh, Jun-Seok;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.134-135
    • /
    • 2008
  • Ultra-thin $SiO_2/ZrO_2$ dielectrics were deposited by atomic layer chemical vapor deposition (ALCVD) method for non-volatile memory application. Metal-oxide-semiconductor (MOS) capacitors were fabricated by stacking ultra-thin $SiO_2$ and $ZrO_2$ dielectrics. It is found that the tunneling current through the stacked dielectric at the high voltage is lager than that through the conventional silicon oxide barrier. On the other hand, the tunneling leakage current at low voltages is suppressed. Therefore, the use of ultra-thin $SiO_2/ZrO_2$ dielectrics as a tunneling barrier is promising for the future high integrated non-volatile memory.

  • PDF

SILC of Silicon Oxides

  • Kang, C.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.428-431
    • /
    • 2003
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between $113.4{\AA}$ and $814{\AA}$, which have the gate area 10-3cm2. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.

  • PDF

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Electrical characteristics of SiC thin film charge trap memory with barrier engineered tunnel layer

  • Han, Dong-Seok;Lee, Dong-Uk;Lee, Hyo-Jun;Kim, Eun-Kyu;You, Hee-Wook;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.255-255
    • /
    • 2010
  • Recently, nonvolatile memories (NVM) of various types have been researched to improve the electrical performance such as program/erase voltages, speed and retention times. Also, the charge trap memory is a strong candidate to realize the ultra dense 20-nm scale NVM. Furthermore, the high charge efficiency and the thermal stability of SiC nanocrystals NVM with single $SiO_2$ tunnel barrier have been reported. [1-2] In this study, the SiC charge trap NVM was fabricated and electrical properties were characterized. The 100-nm thick Poly-Si layer was deposited to confined source/drain region by using low-pressure chemical vapor deposition (LP-CVD). After etching and lithography process for fabricate the gate region, the $Si_3N_4/SiO_2/Si_3N_4$ (NON) and $SiO_2/Si_3N_4/SiO_2$ (ONO) barrier engineered tunnel layer were deposited by using LP-CVD. The equivalent oxide thickness of NON and ONO tunnel layer are 5.2 nm and 5.6 nm, respectively. By using ultra-high vacuum magnetron sputtering with base pressure 3x10-10 Torr, the 2-nm SiC and 20-nm $SiO_2$ were successively deposited on ONO and NON tunnel layers. Finally, after deposited 200-nm thick Al layer, the source, drain and gate areas were defined by using reactive-ion etching and photolithography. The lengths of squire gate are $2\;{\mu}m$, $5\;{\mu}m$ and $10\;{\mu}m$. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer, E4980A LCR capacitor meter and an Agilent 81104A pulse pattern generator system. The electrical characteristics such as the memory effect, program/erase speeds, operation voltages, and retention time of SiC charge trap memory device with barrier engineered tunnel layer will be discussed.

  • PDF

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩형 SONOSFET NVSM 셀의 기억 트랩분포 결정)

  • 양전우;홍순혁;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.822-827
    • /
    • 2000
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor field effect transistor) NVSM (nonvolatile semiconductor memory) cell is investigated by single junction charge pumping method. The device was fabricated by 0.35㎛ standard logic fabrication process including the ONO stack dielectrics. The thickness of ONO dielectricis are 24$\AA$ for tunnel oxide, 74 $\AA$ for nitride and 25 $\AA$ for blocking oxide, respectively. By the use of single junction charge pumping method, the lateral profiles of both interface and memory traps can be calculated directly from experimental charge pumping results without complex numerical simulation. The interface traps were almost uniformly distributed over the whole channel region and its maximum value was 7.97$\times$10$\^$10/㎠. The memory traps were uniformly distributed in the nitride layer and its maximum value was 1.04$\times$10$\^$19/㎤. The degradation characteristics of SONOSFET with write/erase cycling also were investigated.

  • PDF

Enhancement of nonvolatile memory of performance using CRESTED tunneling barrier and high-k charge trap/bloking oxide layers (Engineered tunnel barrier가 적용되고 전화포획층으로 $HfO_2$를 가진 비휘발성 메모리 소자의 특성 향상)

  • Park, Goon-Ho;You, Hee-Wook;Oh, Se-Man;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.415-416
    • /
    • 2009
  • The tunnel barrier engineered charge trap flash (TBE-CTF) non-volatile memory using CRESTED tunneling barrier was fabricated by stacking thin $Si_3N_4$ and $SiO_2$ dielectric layers. Moreover, high-k based $HfO_2$ charge trap layer and $Al_2O_3$ blocking layer were used for further improvement of the NVM (non-volatile memory) performances. The programming/erasing speed, endurance and data retention of TBE-CTF memory was evaluated.

  • PDF

Single Crystalline ${\beta}$-Na0.33V2O5 Nanowires Based Supercapacitor

  • Trang, Nguyen Thi Hong;Shakir, Imran;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.587-587
    • /
    • 2012
  • Supercapacitors, which can deliver significant energy with high power density, have attracted a lot of attention due to their potential application in energy storage. Among various oxide materials, sodium vanadate has been recognized as one of the most promising electrode materials because of high electrical conductivity. In addition, larger layer spacing of ${\beta}$-Na0.33V2O5 compared to V2O5 makes easier Li+ insertion. Moreover, ${\beta}$-Na0.33V2O5 has a tunnel like structure along b axis with 3 kinds of V site allowing it to enhance the ion intercalation by introducing three different intercalation sites along the tunnel. The tunnel can act as a fast diffusion path for ion diffusion, which can improve the overall charge storage kinetics. In this study, high quality single crystalline sodium vanadate (${\beta}$-Na0.33V2O5) nanowires were grown directly on Pt coated $SiO_2$ substrate by a facile chemical solution deposition method without employing catalyst, surfactant or carrier gas. The results show that great enhancement in capacitance was observed compared with previous reports.

  • PDF

Electrical Characteristics of Engineered Tunnel Barrier using $SiO_2/HfO_2$ and $Al_2O_3/HfO_2$ stacks ($SiO_2/HfO_2$$Al_2O_3/HfO_2$를 이용한 Engineered Tunnel Barrier의 전기적 특성)

  • Kim, Kwan-Su;Park, Goon-Ho;Yoon, Jong-Won;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.127-128
    • /
    • 2008
  • The electrical characteristics of VARIOT (variable oxide thickness) with various $HfO_2$ thicknesses on thin $SiO_2$ or $Al_2O_3$ layer were investigated. Especially, the charge trapping characteristics of $HfO_2$ layer were intensively studied. The thin $HfO_2$ layer has small charge trapping characteristics while the thick $HfO_2$ layer has large memory window. Therefore, the $HfO_2$ layer is superior material and can be applied to charge storage as well as tunneling barrier of the non-volatile memory applications.

  • PDF

Schottky Barrier Tunnel Transistor with PtSi Source/Drain on p-type Silicon On Insulator substrate

  • O, Jun-Seok;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.146-146
    • /
    • 2010
  • 일반적인 MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor)은 소스와 드레인의 형성을 위해서 불순물을 주입하고 고온의 열처리 과정을 거치게 된다. 이러한 고온의 열처리 과정 때문에 녹는점이 낮은 메탈게이트와 게이트 절연막으로의 high-k 물질의 사용에 제한을 받게된다. 이와 같은 문제점을 보완하기 위해서 소스와 드레인 영역에 불순물 주입공정 대신에 금속접합을 이용한 Schottky Barrier Tunnel Transistor (SBTT)가 제안되었다. SBTT는 $500^{\circ}C$ 이하의 저온에서 불순물 도핑없이 소스와 드레인의 형성이 가능하며 실리콘에 비해서 수십~수백배 낮은 면저항을 가지며, 단채널 효과를 효율적으로 제어할 수 있는 장점이 있다. 또한 고온공정에 치명적인 단점을 가지고 있는 high-k 물질의 적용 또한 가능케한다. 본 연구에서는 p-type SOI (Silicon-On-Insulator) 기판을 이용하여 Pt-silicide 소스와 드레인을 형성하고 전기적인 특성을 분석하였다. 또한 본 연구에서는 기존의 sidewall을 사용하지 않는 새로운 구조를 적용하여 메탈게이트의 사용을 최적화하였고 게이트 절연막으로써 실리콘 옥사이드를 스퍼터링을 이용하여 증착하였기 때문에 저온공정을 성공적으로 수행할 수 있었다. 이러한 게이트 절연막은 열적으로 형성시키지 않고도 70 mv/dec 대의 우수한 subthreshold swing 특성을 보이는 것을 확인하였고, $10^8$정도의 높은 on/off current ratio를 갖는 것을 확인하였다.

  • PDF

Stress Induced Leakage Currents in the Silicon Oxide Insulator with the Nano Structures (나노 구조에서 실리콘 산화 절연막의 스트레스 유기 누설전류)

  • 강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4${\AA}$ and 814${\AA}$, which have the gate area $10^3cm^2$. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.