• Title/Summary/Keyword: Tunnel Project

Search Result 281, Processing Time 0.024 seconds

A Case Study on the Establishment of an Excavation Impact Range for Evaluating the Ground Stability of Deep Tunnels and Vertical Shaft Sections in Urban Areas (도심지 대심도 터널 및 수직구 구간 지반안정성 평가를 위한 굴착영향범위 설정 사례)

  • Lee, Seohyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.67-74
    • /
    • 2022
  • The setting of the target area for ground stability evaluation during ground excavation is categorized into theoretical and empirical estimation methods and numerical analysis methods. Generally, the applied theoretical and empirical estimation methods include those by Peck (1969), Caspe (1966), and Clough et al. (1990). The numerical analysis method comprehensively considered the current status of the task section (maximum excavation depth section, ground condition vulnerable section, etc.). It reflected the results of performing two and three-dimensional numerical analyses on the weakest section. Therefore, this study shows an example of setting the scope of influence when excavating the vertical and tunnel sections of a 000-line double-track private investment project through the above theoretical, empirical, and numerical analysis methods.

An Study on Cognition and Investigation of Silla Tumuli in the Japanese Imperialistic Rule (일제강점기의 신라고분조사연구에 대한 검토)

  • Cha, Soon Chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.95-130
    • /
    • 2006
  • Japanese government college researchers, including Sekino Tadashi(關野貞), have conducted research studies and collected data, on overall Korean cultural relics as well as Silla tumuli(新羅古墳) in the early modern times under the Japanese imperialistic rule. They were supported by the Meichi government in the early stage of research, by the Chosun government-general, and by their related organizations after Korea was coIonialized to carry out investigations on Korean antiquities, fine arts, architecture, anthropology, folklore, and so on. The objective for which they prosecuted inquiries into Korean cultural relics, including Silla tumuli, may be attributed to the purport to find out such data as needed for the theoretical foundation to justify their colonialization of Korea. Such a reason often showed locally biased or distorted views. Investigations and surveys had been incessantly carried out by those Japanese scholars who took a keen interest in Korean tumuli and excavated relics since 1886. 'Korea Architecture Survey Reports' conducted in 1904 by Sekino in Korea gives a brief introduction of the contents of Korean tumuli, including the Five Royal Mausoleums(五陵). And in 1906 Imanishi Ryu(今西龍) launched for the first time an excavation survey on Buksan Tumulus(北山古墳) in Sogeumgangsan(小金剛山) and on 'Namchong(南塚)' in Hwangnam-dong, which greatly contributed to the foundation of a basic understanding of Wooden chamber tombs with stone mound(積石木槨墳) and stone chambers with tunnel entrance(橫穴式石室墳). The ground plan and cross section of stone chambers made in 1909 at his excavation survey of seokchimchong(石枕塚) by Yazui Seiyichi(谷井第一) who majored in architecture made a drawing in excavation surveys for the first time in Korea, in which numerical expressions are sharply distinguished from the previous sketched ones. And even in the following excavation surveys this kind of drawing continued. Imanishi and Yazui elucidated that wooden chambers with stone mound chronologically differs from the stone chambers with tunnel entrance on the basis of the results of surveys of the locational characteristics of Silla tumuli, the forms and size of tomb entrance, excavated relics, and so forth. The government-general put in force 'the Historic Spots and Relics Preservation Rules' and 'the Historic Spots Survey Council Regulations' in 1916, establishing 'Historic Spots Survey Council and Museum Conference. When museums initiated their activities, they exhibited those relics excavated from tumuli and conducted surveys of relics with the permission of the Chosun government-general. A gold crown tomb(金冠塚) was excavated and surveyed in 1921 and a seobong tomb(瑞鳳塚) in 1927. Concomitantly with this large size wooden chamber tombs with stone mound attracted strong public attention. Furthermore, a variety of surveys of spots throughout the country were carried out but publication of tumuli had not yet been realized. Recently some researchers's endeavors led to publish unpublished reports. However, the reason why reports of such significant tumuli as seobong tomb had not yet been published may be ascribed to the critical point in those days. The Gyeongju Tumuli Distribution Chart made by Nomori Ken(野守健) on the basis of the land register in the late 1920s seems of much significance in that it specifies the size and locations of 155 tumuli and shows the overall shape of tumuli groups within the city, as used in today's distribution chart. In the 1930s Arimitsu Kyoichi(有光敎一) and Saito Tadashi(齋藤忠) identified through excavation surveys of many wooden chamber tombs with stone mound and stone chambers with tunnel entrance, that there were several forms of tombs in a tomb system. In particular, his excavation survey experience of those wooden chamber tombs with stone mound which were exposed in complicated and overlapped forms show features more developed than that of preceding excavation surveys and reports publication, and so on. The result of having reviewed the contents of many historic spots surveyed at that time. Therefore this reexamination is considered to be a significant project in arranging the history of archaeology in Korea.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

An experimental study for the effect of soil plug on the basal heave stability for the vertical shaft excavation in clay (점성토 지반 수직구 굴착 중 히빙 안정성 증가에 대한 관내토 효과에 대한 실험적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun;Kim, Jung-Tae;Cha, Yohan;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.183-195
    • /
    • 2018
  • Recently, the need for research on vertical shaft excavation is increasing with the increase of the demands for the underground and utility tunnels. As a part of the R&D project of the Ministry of Land, Infrastructure and Transport, CUT (center for utility tunnel) has developed "Ring cut method". "Ring cut method" is a method to improve the stability of the ground against the basal heave by excavator wall pre-penetration during vertical shaft excavation. In this study, the basal heave was simulated by centrifugal model test. The basal heave, ground subsidence, and ground deformation of surrounding ground were analyzed by soil plug effect from wall pre-penetration. It was found that the soil plug could control the basal heaving and ground subsidence, and verified that the 'Ring cut method' could be a good countermeasure for the ground stability against the basal heave.

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

Setting Time, Strength and Rebound Rate of Shotcrete according In Accelerators (급결제에 따른 숏크리트의 응결, 강도 및 리바운드율)

  • Lee Seong-Haeng;Kim Yong-Ha;Hahm Hyung-Gil;Kim Kwan-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.427-434
    • /
    • 2005
  • An experimental investigation was carried out in order to verify the compressive strength, flexural strength, equivalent bending strength, rebound rate of shotcrete according to silicate accelerator, aluminate accelerator, cement mineral accelerator respectively and to especially evaluate the performance of shotcrete using cement mineral accelerator for high quality. The test result of compressive strength was showed that all accelerators were satisfied the required test value for each age, for the requirement of having the $75\%$ or higher compressive strength ratio to plain concretes at 28 days, cement mineral accelerator with $87\%$ compressive strength ratio was only satisfied. In flexural strength test, cement mineral accelerator was satisfied the flexural strength requirement in steel fiber reinforced shotcrete for each age. Aluminate type was conformed to the requirement for 28 days, but not at 1 day, silicate type was failed to satisfy standard requirement. Rebound rate was measured between $11{\~}19\%$ and cement mineral accelerator was showed comparatively lower rebound rate. Based on the test results, cement mineral accelerator exhibited excellent strength improvement and lower rebound rate compared to the conventional accelerator, its result is showed the possibility of making high performance shotcrete.

NetFPGA based capsulator Implementation and its performance evaluation for Future Internet OpenFlow Testbed (미래인터넷 OpenFlow 테스트베드 구축을 위한 NetFPGA기반 캡슐레이터 구현 및 성능평가)

  • Choi, Yun-Chul;Min, Seok-Hong;Kim, Byung-Chul;Lee, Jae-Yong;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.118-127
    • /
    • 2010
  • Current TCP/IP-based Internet architecture has been used for over 30 years, however it will confront with fundamental problems due to new protocol extension limitation since communication environments will change drastically and various user requirements will be emerging in near future. To solve these problems, major countries have started Future Internet researches based on clean slate approach and they will deploy large-scale testbed to experiment and verify new functions. OpenFlow switch technology has been proposed as a new experimental technology for independent protocol that can utilized the legacy network devices and does not interfere with the production Internet traffic. Korea also started Future Internet testbed project called FIRST and OpenFlow switch with NetFPGA card will be used to deploy this testbed. To interconnect distributed testbed using OpenFlow switches, logical tunnel should be established by encapsulating MAC frame inside a unicast IP packet between OpenFlow switches because OpenFlow switches are not directly connected. In this paper, we have implemented a NetFPGA-based that performs MAC in IP tunneling between various OpenFlow switch sites implemented in domestic research network KOREN. The performance evaluation shows that the NetFPGA-based capsulator reveals better performance than the software-based tunneling and it can be utilized as a testbed for experimentation of Future Internet technologies.

Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration (CO2 지하저장과 연계한 원유회수증진 기술)

  • Kim, Hyung-Mok;Bae, Wi-Sup
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Enhanced oil recovery (EOR) technology coupled with underground carbon dioxide sequestration is introduced. $CO_2$ can be injected into an oil reservoir in order to enhance oil production rate and $CO_2$ EOR can be turned into CCS in a long term sense. Coupling $CO_2$ EOR with CCS may secure a large scale and consistent $CO_2$ source for EOR, and the $CO_2$ EOR can bring an additional economic benefit for CCS, since the benefit from enhanced oil production by $CO_2$ EOR will compensate costs for CCS implementation. In this paper, we introduced the characteristics of $CO_2$ EOR technology and its market prospect, and reviewed the Weyburn $CO_2$ EOR project which is the first large-scale $CO_2$ EOR case utilizing an anthropogenic $CO_2$ source. We also introduced geotechnical elements for a successful and economical implementation of $CO_2$ EOR with CCS and they were a miscroseismic monitoring during and after injection of $CO_2$, and determination of minimum miscible pressure (MMP) and maximum injection pressure (MIP) of $CO_2$.

Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019 (2008년부터 2019년까지 수행된 국제공동연구 DECOVALEX 소개)

  • Lee, Changsoo;Kim, Taehyeon;Lee, Jaewon;Park, Jung-Wook;Kwon, Seha;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.271-305
    • /
    • 2020
  • An effect of coupled thermo-hydro-mechanical and chemical (THMC) behavior is an essential part of the performance and safety assessment of geological disposal systems for high-level radioactive waste and spent nuclear fuel. Furthermore, numerical models and modeling techniques are necessary to analyze and predict the coupled THMC behavior in the disposal systems. However, phenomena associated with the coupled THMC behavior are nonlinear, and the constitutive relationships between them are not well known. Therefore, it is challenging to develop numerical models and modeling techniques to analyze and predict the coupled THMC behavior in the geological disposal systems. It is also difficult to verify and validate the development of the models and techniques because it requires expensive laboratory tests and in-situ experiments that need to be performed for a long time. DECOVALEX was initiated in 1992 to efficiently develop numerical models and modeling techniques and validate the developed models and techniques against the lab and in-situ experiments. In Korea, Korea Atomic Energy Research Institute has participated in DECOVALEX-2011, DECOVALEX-2015, and DECOVALEX-2019 since 2008. In this study, all tasks in the three DECOVALEX projects were introduced to the researcher in the field of rock mechanics and geotechnical engineering in Korea.

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.