• 제목/요약/키워드: Tunnel Environment

검색결과 669건 처리시간 0.024초

충진 모형실험을 통한 NATM Composite 라이닝 터널 뒤채움재의 기포손실 최소화를 위한 적정 이송거리 고찰 (A Study on the Proper Transfer Distance for Minimizing Air Flotation Loss of Backfilling Material of NATM Composite lining Tunnel in the Model Test)

  • 마상준;최희섭;이흥수;김경덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1555-1558
    • /
    • 2008
  • In this paper, result of whole test, When the Transfer Distance is increasing, Strength of Backfilling Material of NATM Composite lining Tunnel due to increasing Gravity was increased, but that is higher the Air Flotation than increasing Strength. So, That was predicted a drop of Permeability. And Performing the placing Lightweight Foamed Mortar, we think that it's performance in drain material was lost. Therefore We conclude that Proper Transfer Distance that taking Permeability through minimizing of Air Flotation Loss and getting the Need Strength is 50m.

  • PDF

Ray-Launching 기법을 이용한 2.6 GHz 대역의 터널 내 경로손실 특성 분석 (Path Loss Characterization in Tunnel Using Ray Launching Method at 2.6 GHz)

  • 김도윤;조한신;육종관;박한규
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.33-37
    • /
    • 2003
  • This paper presents the characteristics of large-scale fading in a tunnel environment. The Ray-Launching Method has been used to analyze the characteristics of the tunnel. For a curved tunnel, The concept of RDN (Ray Density Normalization) is introduced in order to obtain more accurate results. For our purposes, the structure of tunnel is assumed to be either a straight or curved tunnel having rectangular cross-section. A large scale fading has been presented shown in several tunnel cases.

  • PDF

지하철 터널 환경에서 다양한 안테나에 따른 2.45GHz 대역의 경로손실 및 지연 특성 (Path Loss and Delay Characteristics According to Various Antennas at 2.45GHz in Subway Tunnel Environment)

  • 공민한;박노준;강영진;송문규
    • 대한전자공학회논문지TC
    • /
    • 제43권5호
    • /
    • pp.162-168
    • /
    • 2006
  • 전파 특성의 이해는 무선 통신 시스템의 설계와 서비스의 구축을 위해 매우 중요하다. 본 논문에서는 곡선형 지하철 터널환경에서 2.45GHz 주파수 대역의 전파 특성을 측정하고 분석하였다. 슬라이딩 코릴레이션 기반의 채널 측정 시스템을 구성하고 안테나의 빔 형태에 따른 특성을 비교하기 위해 5 종류의 안테나를 사용하였다. 터널내 경로손실은 자유공간에 비하여 안테나에 따라 평균 $4.38^{\sim}14.41dB$가 적고 원편파 안테나의 경로손실이 가장 적다. 또한 곡선구간에서 수신 안테나의 위치가 바깥쪽에 위치할 때 경로손실이 가장 적다. 모든 안테나의 지연성분의 90%가 20ns 이내에 존재하며, 지향성 안테나가 무지향성 안테나보다 더 넓은 코히어런스 대역폭을 갖는다. 측정결과 경로손실과 지연 특성을 고려할 때 지하철 터널에서는 원편파 안테나를 사용하는 것이 적합한 것으로 판단된다.

Effects of a tunnel ventilation system within the tie-stall barn environment upon the productivity of dairy cattle during the winter season

  • Sarentonglaga, Borjigin;Sugiyama, Tatsuhiro;Fukumori, Rika;Nagao, Yoshikazu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.748-756
    • /
    • 2019
  • Objective: The objective of this study was to examine the effect of using a tunnel ventilation system within the dairy barn environment upon the productivity of dairy cows during the winter season. Methods: The study was performed at the University Farm, Faculty of Agriculture, Utsunomiya University. Twenty-one Holstein dairy cows (5 heifers and 16 multiparous) were enclosed in a stall barn. Unventilated (UV) and tunnel-ventilated (TV) was operated by turns every other week, and a number of key parameters were measured in the barn, including tunnel ventilation output, temperature, relative humidity, gas concentrations (oxygen [$O_2$], carbon dioxide [$CO_2$], and ammonia [$NH_3$]). Also, skin and rectal temperature, respiratory rate, blood gas concentrations, and bacterial count were measured from nipple attachments on ten cows. The amount of fodder left uneaten, and general components and somatic cell count of the milk were measured. Results: As for our dairy barn environment, air temperature dropped significantly with the passage of time with TV. Humidity was significantly higher with TV at 0600 h compared to UV, while $CO_2$ and $NH_3$ concentrations with UV were significantly higher than with TV at 0000 h and 0600 h. Skin temperature was significantly lower with TV compared to UV at 0000 h and 0600 h. Respiratory rate was also significantly lower at 0600 h with TV than with UV. Bacterial count for the nipple attachments was significantly lower with TV than with UV at 0600 h. The amount of leftover fodder was significantly less with TV in comparison with UV. Conclusion: Our results suggest that a TV system in the winter barn results in environmental improvements, such as reductions in unfavorable gas concentrations and bacterial growth. Consequently, it is expected that barns utilizing a TV system will be beneficial for both animal health and production.

터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행 (Slope stability method establish and carry out in vertical slope for tunnel excavation)

  • 박철숙;김준용;곽한;김민조;최우경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

터널 내 기체 및 입자상 다환방향족탄화수소(PAH) 분포 특성 (Characteristics of Gas- and Particle-phase Polycyclic Aromatic Hydrocarbon (PAH) Distribution in Tunnels)

  • 이지이;이승복;김진영;진현철;임형배;배귀남
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.519-530
    • /
    • 2014
  • Twenty four individual polycyclic aromatic hydrocarbon (PAH) compounds both in gas- and particle-phase were quantified in three tunnels (Namsan Tunnel 3, Jeongneung Tunnel, Bukak Tunnel) to characterize vehiculate emission of PAHs. Gas phase PAHs were dominant in tunnels which consisted of 85% of total PAHs concentrations. Naphthalene and 2-methyl naphthalene were the most abundant gas phase PAH compounds, while the concentrations of fluoranthene and pyrene were highest in the particle phase. Most (96%) of the gas phase PAH compounds consisted of two- and three-aromatic rings whereas most of the particle phase PAHs were in four and five-rings (67%) in tunnels. Average BaP-eq concentrations of PAHs in the particle phase ($20.8{\pm}11.6ngm^{-3}$) was about twenty fold higher than that in the gas phase ($1.6{\pm}0.6ngm^{-3}$). It means that the particle phase PAHs has more adverse health effect than the gas phase PAHs even though the concentrations of the particle phase PAHs were lower than those of the gas phase PAHs. Compared to previous studies reporting diagnostic ratios for specific PAH compounds, the profile of individual PAH compounds measured in this study reflected well for the vehiculate emissions. We reported, for the first time, on the results of the profile of individual PAH compounds measured in tunnels for both gas and particle phases.

부산 수영구 지하철 터널에서의 지하수 유출이 주변 지하수에 미치는 영향 (The Influence of the Surrounding Groundwater by Groundwater Discharge from the Subway Tunnel at Suyeong District, Busan City)

  • 정상용;김태형;박남식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권2호
    • /
    • pp.28-36
    • /
    • 2012
  • This study carried out several kinds of investigations such as geology, hydrogeology, groundwater level and quality, surface-water quality, and the quantity and quality of groundwater discharge from the subway to identify the causes of groundwater contamination around the subway tunnel at Suyeong District in Busan City. Geostatistical analyses were also conducted to understand the characteristics of groundwater level and quality distributions. There are Kwanganri Beach and Suyeong River in the study area, which are basically influenced by seawater. The total quantities of groundwater utilization and groundwater discharge from the subway tunnel in Suyeong District are 2,282,000 $m^3$/year, which is 2.4 times larger than the sustainable development yield of groundwater. The lowest groundwater level around the subway tunnel is about 32 m below the mean sea-level. The large drawdown of groundwater led to the inflow of seawater and salinized river water toward the subway tunnel, and therefore the quality of groundwater didn't satisfy the criteria of potable, domestic, agricultural and industrial uses. Distribution maps of groundwater level and qualities produced by kriging were very useful for determining the causes of groundwater contamination in the study area. The distribution maps of electrical conductivity, chloride and sulfate showed the extent of seawater intrusion and the forceful infiltration of the salinized Suyeong River. This study revealed that seawater and salinized river water infiltrated into the inland groundwater and contaminated the groundwater around the subway tunnel, because the groundwater level was seriously drawdowned by groundwater discharge from the subway tunnel. The countermeasure for the minimization of groundwater discharge from the subway tunnel is necessary to prevent the groundwater obstacles such as groundwater depletion, groundwater-quality deterioration, and land subsidence.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • 한국산업정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발 (Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel)

  • 김태복
    • 한국정보통신학회논문지
    • /
    • 제23권9호
    • /
    • pp.1082-1087
    • /
    • 2019
  • 영상유고감지시스템은 터널 내 보행자, 낙하물, 정지 차량, 역주행, 화재(화염 및 연기) 등 돌발상황 시에 초동 감지 목적의 시스템으로 최근 도심지의 대심도 지하도로 건설에 따라 중요성이 부각되고 있다. 그러므로 영상유고감지시스템을 대심도 복층터널에 적용하기 위하여 복층터널의 설계 특성을 반영하여 개발하였고, 본 논문에서는 특히 기존 영상유고감지시스템에서는 지원되지 않거나 또는 오감지가 많아 복층터널 환경에 그대로 적용하기 어려웠던 화재 감지를 색 영상 분포, 실루엣 확산 및 통계적 특성 분석을 복합적으로 사용하는 방법을 제안하고, 이를 복층터널 테스트베드 환경에서 차량 실물화재 실험을 통하여 검증하였다.

정상류 조건하의 토사터널의 해석 및 설계 (Analysis and Design of Soft Ground Tunnels Subject to Steady-State Groundwater Flow)

  • 이인모;남석우;이명재
    • 한국지반공학회지:지반
    • /
    • 제10권2호
    • /
    • pp.41-56
    • /
    • 1994
  • 지하수위 하에서 터널이 시공될 경우, 터널막장은 시공 중 용수에 의한 영향을 받게 되며 지보 System은 시공 후 지하수 흐름이 문제시 될 수 있다. 븐 연구는 터널막장 및 라이닝에 대해 배수조건에 따른 지하수 흐름을 고려한 적절한 해석 및 설계방법을 제시하고 있다. 첫째, 시공 완료 후 터널 라이닝이 배수조건에 따라 받게 되는 지하수의 영향을 라이닝에 작용하는 응력 및 변위로써 검토하고 각 배수조건별로 적절한 해석 및 설계방법을 제안하였다. 둘째, 시공 중 굴착에 의한 지하수의 흐름이 문제가 되는 터널막장에 대해서 지하수 흐름의 3 차원 모델링을 수행하였으며, 그 결과를 막장의 안정성에 대한 이론적 검토에 반영하여 침투력이 막장의 안정성 미치는 영향에 대하여 검토하였다. 또한 막장을 평면변형률조건(plane strain condition)으로 모델링 하여 침투 고려시와 지하수의 미고려시에 막장면에 작용하는 응력 및 변위를 산출하여 침투력이 막장면에 미치는 영향을 검토하였다. 연구 결과, 터널 시공시 지하굴착 및 배수에 의한 지하수위 저하가 크지 않은 구간에서 터널막 장은 정상류 흐름에 의한 침투력을 고려한 적절한 안정대책이 요구되며, 터널 라이닝 또한 침투를 고려한 배수개념이나 내부 라이닝이 정수압을 견뎌야 하는 비배수 개념에 의해 설계 및 시공이 이루어져야 함을 보여준다.

  • PDF