• Title/Summary/Keyword: Tube Angle

Search Result 466, Processing Time 0.023 seconds

Study on the calibration of a five-hole Pitot-tube for the wake measurement (반류 계측용 5공 피토관의 캘리브레이션 방법에 관한 연구)

  • Kim, W.J.;Kim, D.H.;Yoon, H.S.;Moon, D.Y.;Van, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.11-19
    • /
    • 1997
  • The new definition of calibration coefficients is proposed for a five-hole Pitot tube. Two-angle chart calibration other than one-angle variation is considered to improve the accuracy in the measurement of the three-dimensional velocity fields. Several sets of correlation coefficients are introduced for different shapes of the probe tip. The calibration method with one-angle variation is compared with the new two-angle chart calibration method and the improvement of the present method is clearly shown.

  • PDF

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

Effect of Orientation on Pool Boiling Heat Transfer in Annulus with Small Gap (경사각이 좁은 틈새를 가지는 환상공간 내부 풀비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • An experimental study was carried out to investigate the effect of the inclination angle on the nucleate pool boiling of saturated water at atmospheric pressure. We considered an annulus with a gap of 5 mm and a bottom opening. The inner tube of the annulus was heated, and the outer diameter and the length of the tube were 25.4 mm and 500 mm, respectively. The inclination angle was varied from horizontal to vertical. The results were compared to those for an annulus with a larger gap and a single tube. In the small-gap annulus, the effect of the inclination angle on the heat transfer was not significant. However, an early onset of the critical heat flux was observed at 80 kW/$m^2$ when the annulus was horizontal. Liquid agitation and bubble coalescence were considered to be the major heat-transfer mechanisms.

Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight (경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성)

  • 이길성;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

Unsteady Components of Second-order Velocity and Temperature in a Pulse Tube (맥동관 내부의 2차 속도와 온도의 비정상성분)

  • 박희찬;정은수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.69-76
    • /
    • 2001
  • Unsteady components of the second-order axial velocity and temperature within a tapered pulse tube were obtained by using a novel hybrid method of solution which combines an analytical solution with a numerical solution. The effects of operating frequency, taper angle and cold eng temperature on the unsteady components of the second-order axial velocity and temperature were shown. The unsteady component of the second-order mass flux had the amplitude of the same order as the steady component when the velocities at the ends of the pulse tube have only first-order components.

  • PDF

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Two-Dimensional Analysis Model for Tapered Pulse Tubes (테이퍼를 갖는 맥동관의 2차원 해석모델)

  • Baek, Sang-Ho;Jeong, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.668-676
    • /
    • 2000
  • A two-dimensional model for pulse tubes with tapered cross-section was proposed. Net enthalpy flow and steady mass streaming were investigated by two-dimensional analysis of mass, momentum and energy equations of the gas as well as energy conservation of the tube wall. Steady mass flux profiles show good agreement with the previous approximate solution. It was shown that steady mass streaming can be reduced by tapering a pulse tube and by increasing the length of a pulse tube. Effects of the velocity phase angle and frequency on steady mass streaming were shown.

Condensation and evaporation heat transfer characteristics of HFC-134a in a horizontal smooth and a micro-finned tube (수평 평활관과 마이크로핀 관내에서 HFC-134a의 응축 및 증발열전달 특성)

  • Lee, Sang-Cheon;Park, Byeong-Deok;Han, Un-Hyeok;Lee, Jae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1725-1734
    • /
    • 1996
  • Experimental condensation and evaporation heat transfer coefficients were measured in a horizontal smooth tube and a horizontal micro-finned tube with HFC-134a. The test sections are straight, horizontal tubes with have a 9.52mm outside diameter and about 5000mm long. The micro-finned tube had 60 fins with a height of 0.12mm and a spiral angle of 25.deg.. The condensation test section was a double-pipe type with counter flow configuration. The evaporation test section employed an electic heating method. Enhancement factors which is defined as a ratio of the heat transfer coefficient for micro-finned tube to that for smooth tube, varied from 1.3 to 1.6(mass flux:110~190kg/m$^{2}$s) for condensation and 1.2 to 1.5 (mass flux:70~160kg/m$^{2}$s) for evaporation. The experimental data of condensation and evaporation heat transfer coefficients were compared to several empirical correlations. Based on these comparisons, modified correlations of the condensation and evaporation heat transfer coefficient for both smooth and micro-finned tubes were proposed.

Orientation dependence of GM-type pulse tube refrigerator (GM형 맥동관 냉동기의 저온부 경사도에 따른 냉각 성능 특성 연구)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Lee, Chung-Soo;Kang, In-Su;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.48-52
    • /
    • 2012
  • This paper describes experimental study on the orientation dependence of GM-type pulse tube refrigerator with helium and neon as working gas. A pulse tube refrigerator generates refrigeration work with gas expansion by gas displacer in the pulse tube. The pulse tube is only filled with working gas and there exists secondary flow due to large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube with orifice valve as a phase control device is fabricated and tested. The fabricated pulse tube refrigerator is tested with two different working gases of helium and neon. First, optimal valve opening and operating frequency are determined with experimental results of no-load test. And then, the variation of no-load temperature as orientation angle of cold-head is measured for two different working gases. Effect of orientation dependence of cold-head as working gas is discussed with experimental results.

Effect of the Orifice Area Ratio on the Exit Flow of a Multi-Perforated Tube (다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향)

  • Lee, Sang-Kyoo;Lee, Jee-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.317-323
    • /
    • 2013
  • A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.