• Title/Summary/Keyword: Tsushima current

Search Result 287, Processing Time 0.022 seconds

Comparison of nonlinear 1$1/2$-layer and 2$1/2$-layer numerical models with strong offshore winds and the Tsushima Current in the East Sea

  • Kim, Soon-Young;Lee, Hyong-Sun;Dughong Min;Yoon, Hong-Joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 1999
  • According to numerical experiments, the Sokcho Eddy is produced at $37 5~39.0^{\circ}N$ by strong offshore winds, whereas the Ulleung Eddy is produced at $35~37^{\circ}N$ by an inflow variation of the Tsushima Current. These locations compare well with visual observations. The nonlinear 1$1/2$-layer model showed that most of the East Korea Warm Current (EKWC) driven by the Tsushima Current form the Ulleung Eddy that is larger and stronger than the Sokcho Eddy. In contrast, the nonlinear 2$1/2$-layer model showed that most of the EKWC travels further northward due to a strong subsurface current, thereby enhancing the Sokcho Eddy making it larger and stronger than the Ulleung Eddy. The Sokcho Eddy is also produced relatively offshore due to an eastward subsurface current in the frontal region. Using the 1$1/2$-layer model, when the mass of the Tsushima Current decreases, the two eddies are weakened and produce a circular shape. In the 2$1/2$-layer model the EKWC pushes the Ulleung Eddy northward after 330 days, next the Sokcho and Ulleung eddies begin to interact with each other, and then after 360 days the Ulleung Eddy finally disappears absorbed by the relatively stronger Sokcho Eddy. This behavior compares favorably with other visual observations.

  • PDF

Numerical Experiment on the Ulleung Eddy due to the Variation of the Tsushima Current in the East Sea

  • KIM Soon Young;LEE Jae Chul;LEE Hyong Sun;SHIM Tae Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.1033-1043
    • /
    • 1997
  • In order to understand the generation mechanism of the Ulleung Eddy, we carried out a series of numerical experiments using the nonlinear 11/2 - layer model allowing the inflow of the Tsushima Current. According to our numerical results, the Ulleung Eddy was generated due to the inflow variations of the Tsushima Current. Its inflow through the Korea Strait was deflected to the east due to the Coriolis force and the nonlinear self advection. Thus, an anticyclonic motion was formed at the north of the Korea Strait. The inflow became a coastal boundary current, and finally flowed out model ocean through the eastern exit. When the speed of inflow decreased slowly, the eddy- like motion at the north of the Korea Strait changed into an enclosed anticyclonic eddy of about 200 km in diameter. The Ulleung Eddy became circular shape due to the nonlinear self advection, then changed into elliptical shape in meridional direction because of the blocking effect of the western boundary.

  • PDF

Relationship between the variation of the Tsushima Warm Current and current circulation in the East Sea (동해에서 potential vorticity와 해류순환과의 관계)

  • Lee Chung Il;Cho Kyu Dae;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.89-92
    • /
    • 2004
  • Potential vorticity is useful to illustrate mechanism and distribution pattern of current circulation the upper layer in the East Sea is divided into three part following like surface layer, Tsushima Warm Current(TWC) layer. Potential vorticity shows well the meandering of the TWC and polar front and circulation cell ill the northern part of polar front.

  • PDF

Taxonomy of the Marine Bryozoans from Namhaedo Island and Its Adjacent Waters, Korea (한국 남해도 해역의 태형동물에 관한 분류)

  • Ji Eun Seo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.14 no.4
    • /
    • pp.415-424
    • /
    • 1998
  • Twently seven speices of marine bryozoans from Namhaedo Island and its adjacent waters were identified. Among them, Hippothoa distans is new to Korean fauna and seven species are added as new to Namhaedo Island fauna. Twenty three species of them have been found also in Chejudo Island waters, which is affected by the Tsushima Current. Ten species have been found in the East Sea which is affected by both the Tsushima Warm Current and the North Korea Cold Current. So it is clear that the Namhaedo Island sea area is influenced by both the Tsushima Warm Current and the North Korea Cold Current.

  • PDF

Fluctuation Characteristic of Temperature and Salinity in Coastal Waters around Jeju Island (제주도 연안 천해역의 수온 · 염분 변동 특성)

  • KO Jun-Cheol;KIM Jun-Teck;KIM Sang-Hyun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.306-316
    • /
    • 2003
  • We conducted a time-series analysis of temperature and salinity of sea water around Jeju Island, Korea. Monthly mean temperature and salinity was influenced by precipitation and weather conditions on Jeju as well as by oceanographic conditions of the open sea such as the Tsushima Warm Current and sea water in coastal areas. Salinity of Jeju coastal waters was the highest in April, and it was always over 34.00 psu with tiny fluctuation between December and June. Due to the effects of the Tsushima Warm Current, Jeju coastal waters maintained high salinity and stability. Low salinity and its large fluctuations during summer were closely associated with the China Coastal Water and precipitation in Jeju. The place of the lowest water temperature was the northeast coasts of Jeju (Gimneong, Hado, Jongdalri). In winter, as warmer water of the Tsushima Warm Current appeared in western area of Jeju dwindled flowing along the northern coasts of Jeju area and becoming cool, the lowest water temperature often appeared locally in Gimnyeong and its vicinitly in summer. The Tsushima Warm Current flows into the east entrance of Jeju Strait, but its influence is weak because of geometry and strong vertical mixing due to fast tidal currents.

Two Branches of Tsushima Warm Current in the Western Channel of the Korea Strait (韓國海峽 西水道에서 對馬暖流의 2個 支流)

  • Byun, Sang-Kyung;Chang, Sun-Duck
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.200-209
    • /
    • 1984
  • On the basis of oceanographic observation conducted in summer 1982, the flow pattern of the Tsushima Warm Current definitely showed two branches with high surface velocity more than 70 cm/sec in the western channel of Korea Strait. One of the branches, the East Korea Warm Current, found about 8 km off Pusan flows northward along the east coast of Korea and the other branch, located at about 20km off Pusan flows east after passing the Korea Strait. The branching of two flows already occurred before the Tsushima Warm Current reaches the Pusan Tsushima section, and the volume transport and the widths of the two branches are not much different from each other. The number of branches may be controlled by the width of western channel and the flow of two branches may also be related to the variation of layer depth and the widening ratio of widths between the western channel and the Japan Sea (East Sea).

  • PDF

Submarine Cable Measurements of Voltage for Current Monitoring in the-Tsushima and in the Tokara Straits

  • Hashimoto, Yoshio;Tashiro, Akimasa;Shinozaki, Takashige;Ishii, Hiaeo;Kawatate, Kazuo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.160-168
    • /
    • 2002
  • We have been measuring the voltage differences by using submarine cables in the Tsushima and in the Tokara Straits. The aim of these measurements is to estimate the volume transports of the ocean currents through those straits. In this paper, the voltage differences are compared with the corresponding sea level and air pressure differences between straits. Especially in the Tsushima Strait, the voltage difference is consistent with the air pressure difference as well as the sea level difference.

Structure and Vorticity of the Current Observed Across the Western Channel of the Korea Strait in September of 1987-1989

  • Byun, Sang-Kyung;Kaneko, Arata
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.99-108
    • /
    • 1999
  • With sectional data obtained in September of 1987, 1988 and 1989 by quadrireciprocal ADCP measurement and CTD cast, the current structure, volume transport and vorticity in the Western Channel of the Korea Strait were studied. The characteristics of Tsushima Current water persisted throughout the summer especially in the homogeneous water of temperature $14-16^{\circ}C$ located at the depth of 50-100m below seasonal termocline. Thickness and velocity of the homogeneous layer are about 10-170m and 20-60cm/s. and the relative vorticity for this layer is shown to be nearly constant and it is smaller than the planetary vorticity. Potential vorticity of $2.70-7.10{\times}10^{-6}m^{-1}s^{-1}$ is found to be dependent mainly on planetary rather than on the relative vorticities. The Tsushima Current water represented by the homogeneous layer R14-16^{\circ}C$ may keep the potential vorticity at the area of strong current in the Strait. The ADCP current structure is similar to geostrophic current and the core of the current with the speed of 30-50cm/s is situated in the middle layer over the deep trough. With large tidal fluctuation the volume transport has mean value of 1.17sv which was about 40% larger than that of geostrophic calculation.

  • PDF

Variation of Sound Speed in the Tsushima Warm Current Region of the East Sea (동해의 쓰시마난류 분포역에서 음속의 변동)

  • LEE Chung Il;CHO Kyu Dae;KIM Sang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.170-177
    • /
    • 2003
  • This study is to analyze the influence of the Tsushima Warm Current (TWC) on the variation of sound speed in the southern part of the East Sea. Sound speed is calculated by method of Chen and Millero (1977:, based on the CTD data measured in June of 1996. Sound speed in the central part of the TWC is about $45ms^{-1}$ more fast than that in the other regions without the TWC. Sound speed minimum layer (SML) in the TWC region exists between loom and 341 m, while it exists between 260m and 290m in the non-TWC region. SML distributes along the path of TWC over continental shelf in the coastal waters of Japan.

Spatial Variation of the Polar Front in relation to the Tsushima Warm Current in the East Sea (동해에서 쓰시마난류의 변동과 관련한 극전선의 공간적 변화)

  • 이충일;조규대;최용규
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.943-948
    • /
    • 2003
  • Variation of the polar front in the East Sea is studied using temperature and dissolved oxygen data obtained from Japan Meteorological Agency from 1972 to 1999. Variation of the polar front in the East Sea has a close relation to the variation of the Tsushima Warm Current (TWC). When the TWC spreads widely in the East Sea, polar front moves northward. The spatial variation of the polar front is greater in the southwestern area of the East Sea and the northern area of Tsugaru Strait where the variation of the TWC's distribution area is greater than those in others of the East Sea. Hence, in the southeastern area of the East Sea, that is, between near Noto peninsula and Tsugaru Strait, the spatial variation of the polar front is not so wide as in the southwestern area because the flow of TWC is stable.