• Title/Summary/Keyword: True time delay

Search Result 63, Processing Time 0.021 seconds

Microwave Photonic Filter Using Optical True-Time-Delay Line Matrix (광 실시간 지연선로 행렬을 이용하는 마이크로웨이브 포토닉 필터)

  • Jung, Byung-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 2015
  • Microwave Photonic(MWP) filters capable of use a bandpass filter or a notch filter with large bandwidth have been proposed. 4-lines${\times}$2-bit fiber-optic delay lines with a unit time-delay difference of 50 ps were experimentally realized. By changing the time-delay difference and the coefficients of microwave-modulated optical signals, the bandpass and notch filters were implemented and characterized.

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

An optical true time delay for 10 GHz linear phased array antennas composed of optical 2×2 MEMS switches and fiber delay lines (광 2×2 MEMS 스위치와 광섬유 지연선로를 이용한 10 GHz 선형 위상배열 안테나용 광 실시간 지연선로)

  • 이백송;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.466-472
    • /
    • 2003
  • In this paper, we proposed an optical true time-delay (TTD) feeder system for phased array antennas (PAAs). The system possesses high-speed beam scan capability since, in this scheme, different lengths of fiber delay-lines are selected by optical 2${\times}$2 MEMS switches at high speed. An optical TTD capable of beam scanning in one of eight different directions has been built for 10 GHz linear PAA systems. Experimental results on time delay measurements show that the maximum time delay error is less than 0.2 ps corresponding to a scan angle error of less than 0.84o. We have also designed a 10 GHz linear PAA composed of eight micro-strip patch antenna elements driven by the proposed TTD, and the radiation patterns of this PAA have been analyzed by simulation.

Optical True-Time Delay for High-Directivity Phased Array Antennas (고 지향성 위상 배열 안테나를 위한 실시간 지연선로)

  • 배덕희;신종덕;김부균
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.318-319
    • /
    • 2003
  • 이동통신 시스템에서 데이터, 음성, 영상신호를 효율적으로 전송하기 위해 위상 배열 안테나(Phased-Array Antenna: PAA)에 관한 연구가 최근 국내외적으로 활발히 진행되고 있다. 광통신 기술을 이용한 PAA용 실시간 지연선로 (True Time-Delay: TTD)는 넓은 대역폭, 저 손실, 전자파 간섭에 무관, 소형화, 특히 ‘beam squintr´ 현상이 없는 장점이 있기 때문에 각광을 받고 있다. 특히, 신호의 간섭을 줄이기 위해 안테나 방사 패턴의 부엽 (side lobe)의 크기를 감소시킬 수 있는 안테나 설계기술이 필요하다. (중략)

  • PDF

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.

An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas (2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Kim, Sung-Chul;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.287-294
    • /
    • 2005
  • In this paper, an optical true time-delay (TTD) for two-dimensional (2-D) phased array antennas (PAAs), composed of a multi-wavelength optical source and a fiber optic delay line matrix consisting of $2\times2$ optical switches with optical fiber connected between cross ports, has been proposed. A 2-bit $\times4-bit$ optical TTD for 10-GHz 2-D PAAs has been implemented by cascading a wavelength dependent TTD (WD-TTD) and a wavelength independent TTD (WI-TTD). The unit time delay for WD-TTD and WI-TTD have been chosen as ${\Delta}T=12ps$ and $\Delta\tau=6ps$, respectively. Time delay have been measured at all radiation angles. The maximum delay error for WD-TTD was measured to be 3 ps due to jitter incurred from gain switching. For the case of WI-TTD, error was within ${\pm}\;1\;ps$. The proposed optical TTD for a 2-D PAA has the following advantages: 1) higher gain compared to one-dimensional linear PAAs, 2) stabilization of optical power and wavelength by using a multi-wavelength optical source, and 3) fast beam scan and simple operation due to electronic control of the $2\times2$ optical switches matrix on a column-by-column basis.

Optical true time-delays for phased-array antennas using 2×2 MEMS switches and fiber delay lin (2×2 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 실시간 지연선로)

  • Lee, Gab-Yong;Choi, Yeon-Bong;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.289-294
    • /
    • 2002
  • We propose optical true time-delays (TTDs) for phased-array antennas (PAAs) composed of 2${\times}$2 MEMS switches and fiber delay lines, and implement a TTD which shows a maximum scan angle of $120^{o}$ with $30^{o}$ resolution. Since this structure uses only one fixed wavelength laser diode, it provides several advantages such as easy control, high speed operation, and low cost compared with those of the optical TTDs using tunable laser sources. We design a four element linear PAA using the proposed TTDs at 10 ㎓. Simulation results show that the maximum gain is 11.6 dB at the radiation angle $0^{o}$, 11.2 dB at $\pm$$30^{o}$, and 10.6 dB at $\pm$$60^{o}$.

Continuous Photonic RF True-time Delay Using a Side-polished Fiber Bragg Grating with Heating Electrode (측면 연마된 광섬유 브래그 격자를 이용한 연속적인 광학적 RF 실시간 지연)

  • Chae, Ho-Dong;Kim, Do-Hwan;Kim, Hyoung-Jun;Lee, Sang-Shin;Kim, Hyo-Kyeom;Lee, Kyu-Hyo;Kim, Kwang-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.591-596
    • /
    • 2004
  • In this paper, a photonic RF true-time delay based on a partially side-polished fiber Bragg grating with heating electrode has been proposed and fabricated. It features continuous voltage-controlled operation, requiring no mechanical perturbation and no moving parts. For an RF signal carried over an optical signal, the time delay has been obtained by controlling the voltage applied to the electrode and thus adjusting its reflection positions from the fiber grating via the thermooptic effect. The achieved time delay is about 100 ps with the electrical power consumption of 280 mW.

Squint-less Phased Array Antenna Near-field Subwavelength Focusing with True-time Optical Delay Line (광 지연선로를 이용한 스퀸팅이 없는 위상배열 안테나의 근접장 서브파장 포커싱)

  • Jung, Young Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.94-100
    • /
    • 2019
  • The near-field subwavelength squint-less focusing system of a phased array antenna is designed and demonstrated by numerical simulation. The Huygens-Fresnel principle is applied to numerical simulation for calculation of the phased array antenna at microwave frequency. It was shown that beam squinting can be eliminated, utilizing true-time optical delay lines based on a chirped fiber grating in the proposed system. Furthermore, subwavelength focusing with high numerical aperture can be achieved by considering the fact that the array elements of the phased-array antenna can be treated as diffractive elements in an optical lens system. Also, side lobes can be suppressed by decreasing the distance between element antennas to less than half of the wavelength.