• 제목/요약/키워드: True Random Signal

검색결과 14건 처리시간 0.02초

Design and Implementation of True Random Noise Radar System

  • Min, Woo-Ki;Kim, Cheol-Hoo;Lukin, Constantin A.;Kim, Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • 제9권3호
    • /
    • pp.130-140
    • /
    • 2009
  • The design theory and experimental results of a true random noise radar system are presented in this paper. Target range information can be extracted precisely by correlation processing between the delayed reference and the signal received from a target, and the velocity information by the Doppler processing with successive correlation data. A K-band noise radar system was designed using random FM noise signal, and the characteristics of the fabricated system were examined with laboratory and outdoor experiments. A C-band random FM noise signal was generated by applying a low-frequency white Gaussian noise source to VCO(Voltage Controlled Oscillator), and a K-band Tx noise signal with 100 MHz bandwidth was obtained by using a following frequency multiplier. Two modified wave-guide horn arrays were designed and fabricated, and used for the Tx and Rx antennas. The required amount of Tx/Rx isolation was attained by using a coupling cancellation circuit as well as keeping them apart with predetermined spacing. A double down-conversion scheme was used in the Rx and reference channels, respectively, for easy post processing such as correlation and Doppler processing. The implemented noise radar performance was examined with a moving bicycle and a very high-speed target with a velocity of 150 m/s. The results extracted by the Matlab simulation using the logging data were found to be in a reasonable agreement with the expected results.

진성난수 생성기를 위한 베타선 센서 설계에 관한 연구 (A Study on the Design of a Beta Ray Sensor for True Random Number Generators)

  • 김영희;김홍주;박경환;김종범;하판봉
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.619-628
    • /
    • 2019
  • 본 논문에서는 진성난수 생성기를 위한 베타선 센서를 설계하였다. PMOS 피드백 트랜지스터의 게이트를 DC 전압으로 바이어스하는 대신 PMOS 피드백 트랜지스터에 흐르는 전류가 PVT 변동에 둔감하도록 설계된 전류 바이어스 회로를 mirroring하게 흐르도록 하므로 CSA의 signal voltage의 변동을 최소화하였다. 그리고 BGR (Bandgap Reference) 회로를 이용하여 공급된 정전류를 이용하여 신호 전압을 VCOM 전압 레벨까지 충전하므로 충전 시간의 변동을 줄여 고속 감지가 가능하도록 하였다. 0.18㎛ CMOS 공정으로 설계된 베타선 센서는 corner별 모의실험 결과 CSA 회로의 최소 신호전압과 최대 신호전압은 각각 205mV와 303mV이고, pulse shaper를 거친 출력 신호를 비교기의 VTHR (Threshold Voltage) 전압과 비교해서 발생된 펄스의 최소와 최대 폭은 각각 0.592㎲와 1.247㎲로 100kHz의 고속 감지가 가능한 결과가 나왔으며, 최대 100Kpulse/sec로 계수할 수 있도록 설계하였다.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.

Voice Activity Detection with Run-Ratio Parameter Derived from Runs Test Statistic

  • Oh, Kwang-Cheol
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.95-105
    • /
    • 2003
  • This paper describes a new parameter for voice activity detection which serves as a front-end part for automatic speech recognition systems. The new parameter called run-ratio is derived from the runs test statistic which is used in the statistical test for randomness of a given sequence. The run-ratio parameter has the property that the values of the parameter for the random sequence are about 1. To apply the run-ratio parameter into the voice activity detection method, it is assumed that the samples of an inputted audio signal should be converted to binary sequences of positive and negative values. Then, the silence region in the audio signal can be regarded as random sequences so that their values of the run-ratio would be about 1. The run-ratio for the voiced region has far lower values than 1 and for fricative sounds higher values than 1. Therefore, the parameter can discriminate speech signals from the background sounds by using the newly derived run-ratio parameter. The proposed voice activity detector outperformed the conventional energy-based detector in the sense of error mean and variance, small deviation from true speech boundaries, and low chance of missing real utterances

  • PDF

신뢰도 신호를 갖는 RC 회로 기반 PUF 설계 (A Physically Unclonable Function based on RC Circuit with a Confidence Signal)

  • 최지원;김범중;이형규;이중희;박아란;이규호;장우현
    • 한국산업정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.11-18
    • /
    • 2022
  • PUF(physically unclonable function)는 회로의 자연적인 변이를 이용하여 복제 불가능한 난수를 생성하는 회로이다. 통제가 어려운 변이를 활용하기 때문에 예측이 불가능하여 완전한 난수를 생성할 수 있지만 환경 변수에 의해 영향을 받는다는 문제가 있다. 본 논문에서는 이를 해결하기 위해 신뢰도 신호를 생성하는 PUF를 제안한다. 두 회로의 시간상수(time constant)의 차이를 이용한 PUF를 설계, 구현하여 서로 다른 PUF에서는 충분히 다른 출력이 나오고 같은 PUF에서는 온도가 변하여도 출력값의 큰 차이가 없음을 검증하였다. 오류정정코드를 사용하는 기존 기술 대비 700배 이상 작은 오버헤드로 동등한 수준의 신뢰도를 보장한다.

커패시터 커플링 노이즈를 줄인 단일 전원 CMOS 베타선 센서 회로 설계 (Design of Single Power CMOS Beta Ray Sensor Reducing Capacitive Coupling Noise)

  • 김홍주;차진솔;황창윤;이동현;;박경환;김종범;하판봉;김영희
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.338-347
    • /
    • 2021
  • 본 논문에서는 DB하이텍 0.18㎛ CMOS 공정을 이용하여 진성난수 생성기에 사용되는 베타선 센서 회로를 설계하였다. CSA 회로는 PMOS 피드백 저항과 NMOS 피드백 저항을 선택하는 기능, 50fF과 100fF의 피드백 커패시터를 선택하는 기능을 갖는 회로를 제안하였다. 그리고 펄스 셰이퍼(pulse shaper) 회로는 비반전 증폭기를 이용한 CR-RC2 펄스 셰이퍼 회로를 사용하였다. 본 논문에서 사용한 OPAMP 회로는 이중 전원(dual power) 대신 단일 전원(single power) 사용하고 있으므로 CR 회로의 저항과 RC 회로의 커패시터의 한쪽 노드는 GND 대신 VCOM에 연결한 회로를 제안하였다. 그리고 펄스 셰이퍼의 출력신호가 단조 증가가 아닌 경우 비교기 회로의 출력 신호가 다수의 연속된 펄스가 발생하더라도 단조 다중발진기(monostable multivibrator) 회로를 사용하여 신호 왜곡이 안되도록 하였다. 또한 CSA 입력단인 VIN과 베타선 센서 출력단을 실리콘 칩의 상단과 하단에 배치하므로 PCB trace 간의 커패시터 커플링 노이즈(capacitive coupling noise)를 줄이도록 하였다.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • 제7권2호
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

디지털 스위칭 노이즈를 감소시킨 베타선 센서 설계 (A Study on the Design of a Beta Ray Sensor Reducing Digital Switching Noise)

  • 김영희;김홍주;차진솔;황창윤;이동현;라자 무하마드 살만;박경환;김종범;하판봉
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.403-411
    • /
    • 2020
  • 기존에 진성난수 생성기를 위한 베타선 센서 회로의 아날로그 회로와 비교기 회로에 사용되는 파워와 그라운드 라인은 서로 공유하므로 비교기 회로의 디지털 스위칭에 의해 발생되는 파워와 그라운드 라인에서의 전압강하가 CSA를 포함한 아날로그 회로의 출력 신호 전압이 감소하는 원인이었다. 그래서 본 논문에서는 디지털 스위칭 노이즈의 source인 비교기 회로에 사용되는 파워와 그라운드 라인을 아날로그 회로의 파워와 그라운드 라인과 분리하므로 CSA(Charge Sensitive Amplifier) 회로를 포함한 아날로그 회로의 출력신호전압이 감소되는 것을 줄였다. 그리고 VREF(=1.195V) 전압을 VREF_VCOM과 VREF_VTHR 전압으로 변환해주는 전압-전압 변환기 회로는 PMOS current mirror를 통해 IREF를 구동할 때 PMOS current mirror의 드레인 전압이 다른 경우 5.5V의 고전압 VDD에서 channel length modulation effect에 의해 각각의 current mirror를 통해 흐르는 구동 전류가 달라져서 VREF_VCOM과 VREF_VTHR 전압이 감소하는 문제가 있다. 그래서 본 논문에서는 전압-전압 변환기 회로의 PMOS current mirror에 PMOS 다이오드를 추가하므로 5.5V의 고전압에서 VREF_VCOM과 VREF_VTHR의 전압이 down되지 않도록 하였다.

Reconstruction of gusty wind speed time series from autonomous data logger records

  • Amezcua, Javier;Munoz, Raul;Probst, Oliver
    • Wind and Structures
    • /
    • 제14권4호
    • /
    • pp.337-357
    • /
    • 2011
  • The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.

A machine learning informed prediction of severe accident progressions in nuclear power plants

  • JinHo Song;SungJoong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2266-2273
    • /
    • 2024
  • A machine learning platform is proposed for the diagnosis of a severe accident progression in a nuclear power plant. To predict the key parameters for accident management including lost signals, a long short term memory (LSTM) network is proposed, where multiple accident scenarios are used for training. Training and test data were produced by MELCOR simulation of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident at unit 3. Feature variables were selected among plant parameters, where the importance ranking was determined by a recursive feature elimination technique using RandomForestRegressor. To answer the question of whether a reduced order ML model could predict the complex transient response, we performed a systematic sensitivity study for the choices of target variables, the combination of training and test data, the number of feature variables, and the number of neurons to evaluate the performance of the proposed ML platform. The number of sensitivity cases was chosen to guarantee a 95 % tolerance limit with a 95 % confidence level based on Wilks' formula to quantify the uncertainty of predictions. The results of investigations indicate that the proposed ML platform consistently predicts the target variable. The median and mean predictions were close to the true value.