• Title/Summary/Keyword: Tropospheric ozone

Search Result 71, Processing Time 0.021 seconds

Tropospheric Ozone Retrieval Algorithm Based on the TOMS Scanning Geometry

  • Kim, Jae-Hwan;Na, Sun-Mi;Newchurch, M.J.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • This paper applies the Scan-Angle Method (SAM) to the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe (EP) satellite for determining tropospheric ozone based on TOMS scan geometry. In the northern tropical Africa burning season, the distribution of the SAM-derived tropospheric ozone presents a tropospheric ozone enhancement related to biomass burning. This distribution is consistent with that of fire counts observed from Along Track Scanning Radiometer (ATSR) and that of carbon monoxide, the tropospheric ozone precursor, observed from Measurements of Pollution In The Troposphere (MOPITI). However, this feature is not shown in the distribution of tropospheric ozone derived from other TOMS-based algorithms for the northern burning season. In the high latitudes, the influence of pollution in the SAM results is seen over the northern continents in agreement with carbon monoxide for northern summer when the dynamical activity is weak in the northern hemisphere.

Comparison of tropospheric ozone derivation from TOMS and OMI

  • Kim, Jae-Hwan;Na, Sun-Mi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.308-311
    • /
    • 2006
  • This study compared between tropospheric column ozone by applying the SAM method to TOMS and OMI data for northern summer. Tropospheric ozone from the SAM represents a peak over the tropical Atlantic, where it is related with biomass burning. This feature is also seen in the distribution of the model and CO. Additionally, enhancement of the SAM ozone over the Middle East, and South and North America agrees well with the model and CO distribution. However, the SAM results show more ozone than the model results over the northern hemisphere, especially the ocean (e.g. the North Pacific and the North Atlantic). The tropospheric ozone distribution from OMI data shows more ozone than that from TOMS data. This can be caused by different viewing angle, sampling frequency, and a-priori ozone profiles between OMI and TOMS. The correlation between the SAM tropospheric ozone and CO is better than that between the model and CO in the tropics. However, that correlation is reversed in the midlatitude.

  • PDF

Analysis of Tropical Tropospheric Ozone Derivation from Residual-Type Method

  • Na Sun-Mi;Kim Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • During the northern burning season, biomass burning is found north of the equator, while satellite estimates from the residual-type method such as the CCD method show higher ozone south of the equator. This discrepancy is called the tropical Atlantic paradox (Thompson et ai., 2000). We use satellite and ground-based measurements to investigate the paradox. When the background tropospheric ozone over the Pacific Ocean from TOMS measurements is subtracted from the latitudinal total ozone distribution (e.g. TOMS-Pacific method), the results show remarkable agreement with the latitudinal stratospheric ozone distribution using the CCD method. The latitudinal tropospheric ozone distribution using the CCD method, with a persistent maximum over the southern tropical Atlantic, is also seen in the latitudinal tropospheric ozone distribution using the TOMS-Pacific method. It suggests that the complicated CCD method can be replaced by the simple TOMS-Pacific method. However, the tropical Atlantic paradox exists in the results of both the CCD and TOMS-Pacific methods during the northern buming season. In order to investigate this paradox, we compare the latitudinal ozone distributions using the CCD and TOMS-Pacific methods by using the SAGE measurements (e.g. TOMS-SAGE method) and the SHADOZ ozonesoundings (e.g. TOMS-Sonde method) assuming zonally invariant stratospheric ozone, which is the same assumption as of the CCD method. During the northern burning season, the latitudinal distributions in the tropospheric ozone derived from the TOMS-SAGE and TOMS-Sonde methods show higher tropospheric ozone over the northern tropical Atlantic than the southern Atlantic due to a stronger gradient in stratospheric ozone relative to that from the CCD and TOMS-Pacific methods. This indicates that the latitudinal tropospheric ozone distribution can be changed depending on the data that is used to determine the latitudinal stratospheric ozone distribution. Therefore, there is a possibility that the north-south gradient in stratospheric ozone over the Atlantic can be a solution of the paradox.

Simple tropospheric ozone retrieval from TOMS and OMI

  • Kim, Jae-Hwan;Kim, So-Myoung;Na, Sun-Mi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.253-256
    • /
    • 2006
  • When the background tropospheric ozone column over the Pacific Ocean is subtracted from the latitudinal total ozone distribution, the results show remarkable agreement with the latitudinal stratospheric ozone distribution using the CCD. The latitudinal tropospheric ozone distribution using the CCD method, with a persistent maximum over the southern tropical Atlantic, is also seen in the latitudinal tropospheric ozone distribution using the T-P method. It suggests that the CCD method can be replaced by the simple T-P method. However, the tropical Atlantic paradox exists in the results of both the CCD and T-P methods during the northern burning season. In order to investigate this paradox, we compare the latitudinal ozone distributions using the CCD and T-P methods by using the SAGE measurements (e.g. TSA method) and the SHADOZ ozonesoundings (e.g. T-S method) assuming zonally invariant stratospheric ozone, which is the same assumption as of the CCD method. During the northern burning season, the latitudinal distributions in the tropospheric ozone derived from the T-SA and T-S methods show higher tropospheric ozone over the northern tropical Atlantic than the southern Atlantic due to a stronger gradient in stratospheric ozone relative to that from the CCD and T-P methods. This indicates that the latitudinal tropospheric ozone distribution can be changed depending on the data that is used to determine the latitudinal stratospheric ozone distribution. Therefore, there is a possibility that the north-south gradient in stratospheric ozone over the Atlantic can be a solution of the paradox.

  • PDF

Distribution of Tropical Tropospheric Ozone Determined by the Scan-Angle Method applied to TOMS Measurements

  • Kim, Jae-H.;Na, Sun-Mi;Newchurch, M. J.;Emmons, L.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.7-11
    • /
    • 2002
  • This study introduces the first method that determines tropospheric ozone column directly from a space-based instrument. This method is based on the physical differences in the Total Ozone Mapping Spectrometer (TOMS) measurement as a function of its scan-angle geometry. Tropospheric ozone in September-October exhibits a broad enhancement over South America, the southern Atlantic Ocean, and western South Africa and a minimum over the central Pacific Ocean. Tropical tropospheric ozone south of the equator is higher than north of the equator in September-October, the southern burning season. Conversely, ozone north of the equator is higher in March, the northern burning season. Overall, the ozone over the southern tropics during September-October is significantly higher than over the northern tropics. Abnormally high tropospheric ozone occurs over the western Pacific Ocean during the El Nino season when the ozone amounts are as high as the ozone over the Africa.

  • PDF

Interpretation of tropical tropospheric ozone derivation from TOMS

  • Na Suomi;Kim Jae-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.366-369
    • /
    • 2005
  • A persistent maximum over the southern tropical Atlantic in the latitudinal tropospheric ozone distribution from the CCD method is seen in the latitudinal tropospheric ozone distribution from the TOMS-Pacific method. The tropical Atlantic paradox exists in the results of both the CCD and TOMS-Pacific methods. During the northern burning season, the latitudinal distributions in the tropospheric ozone derived from the TOMS-SAGE and TOMS-Sonde methods show higher tropospheric ozone over the northern tropical Atlantic than the southern Atlantic due to a stronger gradient in stratospheric ozone relative to that from the CCD and TOMS-Pacific methods.

  • PDF

Characteristics of Summer Tropospheric Ozone over East Asia in a Chemistry-climate Model Simulation

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.38 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.

Intercomparison and evaluation of satellite-derived tropospheric ozone (인공위성을 이용한 대류권 오존 추정치 비교 및 검증)

  • Kim Jae-Hwan;Na Seon-Mi;M. J. Newchurch
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.123-124
    • /
    • 2003
  • Fishman and Larson (1987) derived tropical tropospheric column ozone by subtracting stratospheric column ozone measured by the Stratospheric Aerosol and Gas Experiment (SAGE) from total column ozone obtained by the Total Ozone Mapping Spectrometer (TOMS). Later, the Convective Cloud Differential (CCD) method (Ziemke et al., 1998) indicated stratospheric ozone is invariant with longitude and concluded the zonal variation of total ozone determines the zonal variation of tropospheric ozone. (omitted)

  • PDF

Influence of Stratospheric Intrusion on Upper Tropospheric Ozone over the Tropical North Atlantic

  • Kim, So-Myoung;Na, Sun-Mi;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • This study observed the upper tropospheric ozone enhancement in the northern Atlantic for the Aerosols99 campaign in January-February 1999. To find the origin of this air, we have analyzed the horizontal and vertical fields of Isentropic Potential Vorticity (IPV) and Relative Humidity (RH). The arch-shaped IPV is greater than 1.5 pvus indicating stratospheric air stretches equatorward. These arch-shaped regions are connected with regions of RH less than 20%. The vertical fields of IPV and RH show the folding layer penetrating into the upper troposphere. These features support the idea that the upper tropospheric ozone enhancement originated from the stratosphere. Additionally, we have investigated the climatological frequency of stratospheric intrusion over the tropical north Atlantic using IPV and RH. The total frequency between the equator and $30^{\circ}N$ over the tropical north Atlantic exhibits a maximum in northern winter. It suggests that the stratospheric intrusion plays an important role in enhancing ozone in the upper troposphere over the tropical north Atlantic in winter and early spring. Although the tropospheric ozone residual method assumed zonally invariant stratospheric ozone, stratospheric zonal ozone variance could be caused by stratospheric intrusions. This implies that stratospheric intrusion influences ozone variance over the Atlantic in boreal winter and spring, and the intrusion is a possible source for the tropical north Atlantic paradox.

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.