DOI QR코드

DOI QR Code

Analysis of Tropical Tropospheric Ozone Derivation from Residual-Type Method

  • Na Sun-Mi (Department of Atmospheric Science, Pusan National University) ;
  • Kim Jae-Hwan (Department of Atmospheric Science, Pusan National University)
  • Published : 2006.02.01

Abstract

During the northern burning season, biomass burning is found north of the equator, while satellite estimates from the residual-type method such as the CCD method show higher ozone south of the equator. This discrepancy is called the tropical Atlantic paradox (Thompson et ai., 2000). We use satellite and ground-based measurements to investigate the paradox. When the background tropospheric ozone over the Pacific Ocean from TOMS measurements is subtracted from the latitudinal total ozone distribution (e.g. TOMS-Pacific method), the results show remarkable agreement with the latitudinal stratospheric ozone distribution using the CCD method. The latitudinal tropospheric ozone distribution using the CCD method, with a persistent maximum over the southern tropical Atlantic, is also seen in the latitudinal tropospheric ozone distribution using the TOMS-Pacific method. It suggests that the complicated CCD method can be replaced by the simple TOMS-Pacific method. However, the tropical Atlantic paradox exists in the results of both the CCD and TOMS-Pacific methods during the northern buming season. In order to investigate this paradox, we compare the latitudinal ozone distributions using the CCD and TOMS-Pacific methods by using the SAGE measurements (e.g. TOMS-SAGE method) and the SHADOZ ozonesoundings (e.g. TOMS-Sonde method) assuming zonally invariant stratospheric ozone, which is the same assumption as of the CCD method. During the northern burning season, the latitudinal distributions in the tropospheric ozone derived from the TOMS-SAGE and TOMS-Sonde methods show higher tropospheric ozone over the northern tropical Atlantic than the southern Atlantic due to a stronger gradient in stratospheric ozone relative to that from the CCD and TOMS-Pacific methods. This indicates that the latitudinal tropospheric ozone distribution can be changed depending on the data that is used to determine the latitudinal stratospheric ozone distribution. Therefore, there is a possibility that the north-south gradient in stratospheric ozone over the Atlantic can be a solution of the paradox.

Keywords

References

  1. Chatfield, R. B., H. Guan, A. M. Thompson, and J. C. Witte, 2004. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima, Geophys. Res. Lett. 31: doi:10.1029/2003GL0118866
  2. Edwards, D. P., et al, 2003. Tropospheric ozone over the tropical Atlantic: A satellite perspective, J. Geophys. Res., 108: doi: 10.1029/2002JD00 2927
  3. Fishman, J. and J. C. Larsen, 1987. Distribution of total ozone and stratospheric ozone in the tropics: Implication for the distribution of tropospheric ozone, J. Geophys. Res., 92: 6627-6634 https://doi.org/10.1029/JD092iD06p06627
  4. Fishman, J., C. E. Watson, J. C. Larsen, and J. A. Logan, 1990. Distribution of tropospheric ozone determined from satellite data, J. Geophys. Res., 95: 3599-3617 https://doi.org/10.1029/JD095iD04p03599
  5. Galanter, M., H. Levy, and G. R. Carmichael, 2000. Impacts of biomass burning on tropospheric CO, NOx, and O3, J. Geophys. Res., 105: 6633-6653 https://doi.org/10.1029/1999JD901113
  6. Hudson, R. D. and A. M. Thompson, 1998. Tropical tropospheric ozone from total ozone mapping spectrometer by a modified residual method, J. Geophys. Res., 103: 22,129-22,145
  7. Hudson, R. D., J. H. Kim, and A. M. Thompson, 1995. On the derivation of tropospheric column from radiances measured by the total ozone mapping spectrometer, J. Geophys. Res., 100: 11,137-11,145 https://doi.org/10.1029/94JA01744
  8. Jenkins, G. G., J. Ryu, A. M. Thompson, and J. C. Witte, 2003. Linking horizontal and vertical transports of biomass fire emissions to the Tropical Atlantic Ozone Paradox during the Northern Hemisphere winter season: 1999, J. Geophys. Res., 108(D23), 4745: doi:10.1019/2002JD003297
  9. Kim, J. H., Hudson, R. D., and A. M. Thompson, 1996. A new method of deriving time-averaged tropospheric column ozone over the tropics using total ozone mapping spectrometer (TOMS) radiances: Intercomparison and analysis using TRACE A data, J. Geophys. Res., 101: 24317-24330 https://doi.org/10.1029/96JD01223
  10. Kim, J. H., S. Na, M. J. Newchurch, and R. V. Martin, 2005. Tropical tropospheric ozone morphology and seasonality seen in satellite, model, and insitu measurements, J. Geophys. Res., 110, D02303: doi:10.1029/2003JD004332
  11. Liu, X., 2003. Ozone retrieval errors associated with clouds in Total Ozone Mapping Spectrometer (TOMS) data, Ph. D Dissertation, UAH
  12. Martin, R. V., D. J. Jacob, J. A. Logan, I. Bey, R. M. Yantosca, A. C. Staudt, Q. Li, A. M. Fiore, B. N. Duncan, H. Liu, P. Ginoux, and V. Thouret, 2002. Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations, J. Geophys. Res., 107: doi:10.1029/2001JD001480
  13. McPeters, R. D., et al, 1996. Nimbus-7 Total ozone mapping spectrometer (TOMS) data products user's guide, National Aeronautics and Space Administration
  14. Thompson, A. M., and R. D. Hudson, 1999. Tropical tropospheric ozone (TTO) maps from Nimbus 7 and Earth-Probe TOMS by the modified-residual method: Evaluation with sondes, ENSO signals, and trends from Atlantic regional time series, J. Geophys. Res., 104: 26961-26975 https://doi.org/10.1029/1999JD900470
  15. Thompson, A. M., B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, and R. Weller, 2000. A tropical Atlantic paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave-one in January-February 1999, Geophys. Res. Lett. 27: 3317-3320 https://doi.org/10.1029/1999GL011273
  16. Thompson, A. M. et al., 2003. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res., 108(D2), 8238: doi:10.1029/2001JD000967
  17. Wang, H. J., D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker, 2002. Assessment of SAGE version 6.1 ozone data quality, J. Geophys. Res., 107(D23), 4691: doi:10.1029/2002JD002418
  18. Ziemke, J. R., S. Chandra, and P. K. Bhartia, 1998. Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARS MLS/HALOE and convective-cloud differential techniques, J. Geophys. Res., 103: 22115-22128 https://doi.org/10.1029/98JD01567
  19. WMO, 1957. Meteorology--A three-dimensional science: Second session of the commission for aerology, WMO Bull., IV(4), 134-138