DOI QR코드

DOI QR Code

Characteristics of Summer Tropospheric Ozone over East Asia in a Chemistry-climate Model Simulation

  • Park, Hyo-Jin (Gunsan Dongsan Middle School) ;
  • Moon, Byung-Kwon (Division of Science Education/Institute of Fusion Science, Chonbuk National University) ;
  • Wie, Jieun (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
  • Received : 2017.08.12
  • Accepted : 2017.09.12
  • Published : 2017.09.30

Abstract

It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.

Keywords

References

  1. Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q.B., Liu, H.G.Y., Mickley, L.J., and Schultz, M.G., 2001, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research-Atmospheres, 106, 23073-23095. https://doi.org/10.1029/2001JD000807
  2. Boothe, A.C. and Homeyer, C.R., 2017, Global large-scale stratosphere-troposphere exchange in modern reanalyses. Atmospheric Chemistry and Physics, 17, 5537-5559. https://doi.org/10.5194/acp-17-5537-2017
  3. Bretherton, C.S., Smith, C., and Wallace, J.M., 1992, An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5, 541-560. https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
  4. Burney, J. and Ramanathan, V., 2014, Recent climate and air pollution impacts on Indian agriculture. Proceedings of the National Academy of Sciences of the United states of America, 111, 16319-16324.
  5. Chatani, S. and Sudo, K., 2011, Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996-2005. Atmospheric Chemistry and Physics, 11, 8745-8758. https://doi.org/10.5194/acp-11-8745-2011
  6. Choi, K.S., Park, K.J., Lee, K., Kim, J.Y., and Kim, B.J., 2015, Possible influence of western North Pacific monsoon on tropical cyclone activity around Korea. Journal of Korean Earth Science Society, 36, 68-81, doi://10.5467/JKESS.2015.36.1.68.
  7. Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., McKenna, D.S., Santer, B.D., and Smith, R.D., 2006, The Community Climate System Model version 3 (CCSM3). Journal of Climate, 19, 2122-2143. https://doi.org/10.1175/JCLI3761.1
  8. Doherty, R.M., Stevenson, D.S., Collins, W.J., and Sanderson, M.G., 2005, Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model. Atmospheric Chemistry and Physics, 5, 3205-3218. https://doi.org/10.5194/acp-5-3205-2005
  9. Fu, J.L. and Qian, W.H., 2011, The structure of a typical mei-yu front identified by the equivalent temperature. Atmospheric and Oceanic Science Letters, 4, 109-113, doi:10.1080/16742834.2011.11446913.
  10. Ghim, Y.S. and Chang, Y.S., 2000, Characteristics of ground-level ozone distributions in Korea for the period of 1990-1995. Journal of Geophysical Research-Atmospheres 105, 8877-8890. https://doi.org/10.1029/1999JD901179
  11. Han, Z., Sakurai, T., Ueda, H., Carmichael, G.R., Streets, D., Hayami, H., Wang, Z., Holloway, T., Engardt, M., Hozumi, Y., Park, S.U., Kajino, M., Sartelet, K., Fung, C., Bennet, C., Thongboonchoo, N., Tang, Y., Chang, A., Matsuda, K., and Amann, M., 2008, MICS-Asia II: Model intercomparison and evaluation of ozone and relevant species. Atmospheric Environment, 42, 3491-3509. https://doi.org/10.1016/j.atmosenv.2007.07.031
  12. He, Y.J., Uno, I., Wang, Z.F., Pochanart, P., Li, J., and Akimoto, H., 2008, Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region. Atmospheric Chemistry and Physics, 8, 7543-7555. https://doi.org/10.5194/acp-8-7543-2008
  13. Jerrett, M., Burnett, R.T., Pope, C.A., Ito, K., Thurston, G., Krewski, D., Shi, Y.L., Calle, E., and Thun, M., 2009, Long-term ozone exposure and mortality. New England Journal of Medicine, 360, 1085-1095. https://doi.org/10.1056/NEJMoa0803894
  14. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M., and Potter, G.L., 2002, NCEPDOE AMIP-II reanalysis (R-2). Bulletine of the American Meteorological Society, 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  15. Kang, H.S. and Hong, S.Y., 2008, Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. Journal of Geophysical Research, 113, D15119, doi:10.1029/2007JD009692.
  16. Kurokawa, J., Ohara, T., Uno, I., Hayasaki, M., and Tanimoto, H., 2009, Influence of meteorological variability on interannual variations of springtime boundary layer ozone over Japan during 1981-2005. Atmospheric Chemistry and Physics, 9, 6287-6304. https://doi.org/10.5194/acp-9-6287-2009
  17. Lee, S.S., Seo, Y.W., Ha, K.J., and Jhun, J.G., 2013, Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pacific Journal of Atmospheric Sciences, 49, 171-182. https://doi.org/10.1007/s13143-013-0018-x
  18. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., and Pozzer, A., 2015, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367-371. https://doi.org/10.1038/nature15371
  19. Levy, H., 1971, Normal atmosphere-large radical and formaldehyde concentrations predicted. Science, 173, 141-143. https://doi.org/10.1126/science.173.3992.141
  20. Li, J., Yu, R., Yuan, W., Chen, H., Sun, W., and Zhang, Y., 2015, Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth System, 7, 774-790, doi:10.1002/2014MS000414.
  21. Liao, H., Henze, D.K., Seinfeld, J.H., Wu, S.L., and Mickley, L.J., 2007, Biogenic secondary organic aerosol over the United States: Comparision of climatological simulations with observations. Journal of Geophysical Research-Atmosphere, 112, D06201, doi:10.1029/2006jd007813.
  22. Lin, M., Holloway, T., Oki, T., Streets, D.G., and Richter, A., 2009, Multi-scale model analysis of boundary layer ozone over East Asia. Atmospheric Chemistry and Physics, 9, 3277-3301. https://doi.org/10.5194/acp-9-3277-2009
  23. Moon, B.K., Yeh, S.W., Park, Rokjin J, Song, C.K., and Youn, D., 2013, Effects of the El Nino on tropospheric ozone in a simulation using a climate-chemistry model. Journal of the Korean Earth Science Society, 34, 662-668. https://doi.org/10.5467/JKESS.2013.34.7.662
  24. Ogata, T., Ueda, H., Inoue, T., Hayasaki, M., Yoshida, A., Watanabe, S., Kira, M., Ooshiro, M., and Kumai, A., 2014, Projected Future Changes in the Asian Monsoon: A Comparison of CMIP3 and CMIP5 Model Results. Journal of the Meteorological Society of Japan, 92, 207-225. https://doi.org/10.2151/jmsj.2014-302
  25. Park, R.J., Jacob, D.J., Field, B.D., Yantosca, R.M., and Chin, M., 2004, Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. Journal of Geophysical Research-Atmospheres, 109, D15204, doi:10.1029/2003JD004473.
  26. Parrish, D.D., Law, K.S., Staehelin, J., Derwent, R., Cooper, O.R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H.E., Steinbacher, M., and Chan, E., 2013, Lower tropospheric ozone at northern midlatitudes: Changing seasonal cycle. Geophysical Research Letters, 40, 1631-1636. https://doi.org/10.1002/grl.50303
  27. Shindell, D., Faluvegi, G., Lacis, A., Hansen, J., Ruedy, R., and Aguilar, E., 2006, Role of tropospheric ozone increases in 20th-century climate change. Journal of Geophysical Research-Atmospheres, 111, D08302, doi:10.1029/2005JD006348.
  28. Song, F.F. and Zhou, T.J., 2014, The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? Journal of Climate, 27, 8761-8777. https://doi.org/10.1175/JCLI-D-14-00396.1
  29. Sui, C.H., Chung, P.H., and Li, T., 2007, Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophysical Research Letters, 34, L11701, doi:10.1029/2006GL029204.
  30. Tanimoto, H., Ohara, T., and Uno, I., 2009, Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998-2007. Geophysical Research Letters, 36, L23802, doi:10.1029/2009GL041382.
  31. Wang, B., Wu, R.G., and Fu, X.H., 2000, Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? Journal of Climate, 13, 1517-1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  32. Wang, B., Xiang, B.Q., and Lee, J.Y., 2013, Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United states of America,110, 2718-2722. https://doi.org/10.1073/pnas.1214626110
  33. Wang, T., Wei, X.L., Ding, A.J., Poon, C.N., Lam, K.S., Li, Y.S., Chan, L.Y., and Anson, M., 2009, Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007. Atmospheric Chemistry and Physics, 9, 6217-6227. https://doi.org/10.5194/acp-9-6217-2009
  34. Wie, J. and Moon, B.K., 2016, Seasonal relationship between meteorological conditions and surface ozone in Korea based on an offline chemistry-climate model. Atmospheric Pollution Research, 7, 385-392. https://doi.org/10.1016/j.apr.2015.10.020
  35. Xiang, B.Q., Wang, B., Yu, W.D., and Xu, S.B., 2013, How can anomalous western North Pacific subtropical high intensify in late summer? Geophysical Research Letters, 40, 2349-2354. https://doi.org/10.1002/grl.50431
  36. Xie, P.P. and Arkin, P.A., 1997, Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  37. Yang, H., Chen, G., Tang, Q., and Hess, P., 2016, Quantifying isentropic stratosphere-troposphere exchange of ozone. Journal of Geophysical Research-Atmospheres, 121, 3372-3387. https://doi.org/10.1002/2015JD024180
  38. Yoo, J.M. and Jeong, E.J., 2005, Temporal and spatial variability of the TOMS total ozone; global trends and profiles. Journal of Korean Earth Science Society, 26, 199-217.
  39. Youn, D., Park, R.J., Jeong, J.I., Moon, B.K., Yeh, S.W., Kim, Y.H., Woo, J.H., Im, E.G., Jeong, J.H., Lee, S.J., and Song, C.K., 2011, Impacts of aerosols on regional meteorology due to Siberian forest fires in May 2003. Atmospheric Environment, 45, 1407-1412. https://doi.org/10.1016/j.atmosenv.2010.12.028
  40. Young, P.J., Archibald, A.T., Bowman, K.W., Lamarque, J.F., Naik, V., Stevenson, D.S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W.J., Dalsoren, S.B., Doherty, R.M., Eyring, V., Faluvegi, G., Horowitz, L.W., Josse, B., Lee, Y.H., MacKenzie, I.A., Nagashima, T., Plummer, D.A., Righi, M., Rumbold, S.T., Skeie, R.B., Shindell, D.T., Strode, S.A., Sudo, K., Szopa, S., and Zeng, G., 2013, Preindustrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13, 2063-2090. https://doi.org/10.5194/acp-13-2063-2013
  41. Ziemke, J.R., Chandra, S., Duncan, B.N., Froidevaux, L., Bhartia, P.K., Levelt, P.F., and Waters, J.W., 2006, Tropospheric ozone determined from aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model. Journal of Geophysical Research-Atmospheres, 111, D19303, doi:10.1029/2006JD007089.
  42. Ziemke, J.R., Chandra, S., Labow, G.J., Bhartia, P.K., Froidevaux, L., and Witte, J.C., 2011, A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmospheric Chemistry and Physics, 11, 9237-9251. https://doi.org/10.5194/acp-11-9237-2011
  43. Zou, L.W. and Zhou, T.J., 2015, Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models. Advances in Atmospheric Sciences, 32, 794-806. https://doi.org/10.1007/s00376-014-4053-z