• Title/Summary/Keyword: Triterpenoid Saponins

Search Result 58, Processing Time 0.022 seconds

Triterpenoid Saponins from the Roots of Caragana sinica

  • Lee, Yong-Bok;Yoo, Seung-Jo;Kim, Ju-Sun;Kang, Sam-Sik
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.62-68
    • /
    • 1992
  • From the roots of Caragana sinica (Buc'hoz) Rehder (Leguminosae), a new saponin named caraganoside A was isolated and elucidated as 3-0-$\beta$-D-xylopyranosyl (1$\rightarrow$2)-[$\beta$-D-glucopyranosyl (1$\rightarrow$3)]-$\alpha$-L-arabinopyranosyl oleanolic acid 28-O-[$\beta$-D-glucopyranosyl ester by means of chemical and spectral studies. Kalopanax-saponin F, hemsloside Ma3 and araloside A were also isolated and characterized. The former two compounds were separated as their methylesters.

  • PDF

A New Triterpenoid Saponin from the Tropical Marine Sponge Lipastrotethya sp. (열대 해면동물 Lipastrotethya sp.에서 분리된 사포닌 화합물)

  • Eom, Tae-Yang;Lee, Yeon-Ju;Lee, Hyi-Seung
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.287-294
    • /
    • 2016
  • Marine sponges have been a remarkably rich source of pharmacologically active and structurally diverse natural products. As a part of our continuing search for novel secondary metabolites of biomedical importance from marine invertebrate, we encountered the sponge Lipastrotethya sp. from Chuuk, Micronesia. The crude organic extract of this animal exhibited considerable cytotoxicity against the K562 cell line. Guided by the $^1H$ NMR analysis, flash chromatography of the crude extract followed by HPLC yielded a new triterpene glycoside, along with ten known saponins of the sarasinoside class. The structure of this new compound was determined by combined spectroscopic methods such as COSY, HSQC and HMBC experiment. Among these metabolites, six compounds exhibited moderate cytotoxicity against ACHN, MDA-MB-231, NCI-H23 and NUGC-3 cell lines.

Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity

  • Li, Fu;Cao, Yufeng;Luo, Yanyan;Liu, Tingwu;Yan, Guilong;Chen, Liang;Ji, Lilian;Wang, Lun;Chen, Bin;Yaseen, Aftab;Khan, Ashfaq A.;Zhang, Guolin;Jiang, Yunyao;Liu, Jianxun;Wang, Gongcheng;Wang, Ming-Kui;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.600-605
    • /
    • 2019
  • Background: The leaves and roots of Panax ginseng are rich in ginsenosides. However, the chemical compositions of the leaves and roots of P. ginseng differ, resulting in different medicinal functions. In recent years, the aerial parts of members of the Panax genus have received great attention from natural product chemists as producers of bioactive ginsenosides. The aim of this study was the isolation and structural elucidation of novel, minor ginsenosides in the leaves of P. ginseng and evaluation of their antiinflammatory activity in vitro. Methods: Various chromatographic techniques were applied to obtain pure individual compounds, and their structures were determined by nuclear magnetic resonance and high-resolution mass spectrometry, as well as chemical methods. The antiinflammatory effect of the new compounds was evaluated on lipopolysaccharide-stimulated RAW 264.7 cells. Results and conclusions: Two novel, minor triterpenoid saponins, ginsenoside $LS_1$ (1) and 5,6-didehydroginsenoside $Rg_3$ (2), were isolated from the leaves of P. ginseng. The isolated compounds 1 and 2 were assayed for their inhibitory effect on nitric oxide production in LPS-stimulated RAW 264.7 cells, and Compound 2 showed a significant inhibitory effect with $IC_{50}$ of $37.38{\mu}M$ compared with that of NG-monomethyl-L-arginine ($IC_{50}=90.76{\mu}M$). Moreover, Compound 2 significantly decreased secretion of cytokines such as prostaglandin $E_2$ and tumor necrosis factor-${\alpha}$. In addition, Compound 2 significantly suppressed protein expression of inducible nitric oxide synthase and cyclooxygenase-2. These results suggested that Compound 2 could be used as a valuable candidate for medicinal use or functional food, and the mechanism is warranted for further exploration.

Identification of Korean Ginseng Cytochrome P450 gene and Its Characterization by Transformation System (고려인삼 유래 Cytochrome P450 유전자의 동정 및 형질전환에 의한 특성검정)

  • Shim, Ju-Sun;Kim, Yu-Jin;Jung, Seok-Kyu;Kwon, Woo-Saeng;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.212-218
    • /
    • 2009
  • Triterpenoid saponins were synthesized in Panax ginseng C.A. Meyer via the isoprenoid pathway by cyclization of 2,3-oxidosqualene to give primarily oleanane (beta-amyrin) or dammarane triterpenoid skeletons. The triterpenoids are backbone and undergoes various modifications (oxidation, substitution and glycosylation), mediated by cytochrome P450 (CYP)-dependent monooxygenases, glycosyltransferase and other enzymes. This is likely to be due in part to the complexity of the molecules and the lack of pathway intermediates for biochemical studies. A cDNA clone encoding a putative CYP gene was isolated from flower bud of ginseng and transformed into the plant(Nicotiana tabacum cv. Xanthi) and confirmed by PCR analysis. The CYP gene (PgCYP) contained an open reading frame(ORF) encoding mature protein of 500 amino acids. The expression of PgCYP were investigated in transgenic tobacco by reverse transcriptase-polymerase chain reaction (RT-PCR).

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun;Ding, Yan;Song, Seok Bean;Kim, Jeong Ah;Nguyen, Manh Cuong;Ma, Jin Yeul;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

A Potent Medicinal Plant: Polygala Tenuifolia

  • Anvi, RANA
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Polygala Tenuifolia, also described as Yuan Zhi, is a conventional botanic plant found in Korea and China. It's most well- known promise is to improve cognition and guard against mental disorders, cure sputum, anxiety, and sleeplessness, and keep the central nervous system health. The pharmacological aspects of Polygala Tenuifolia's genesis and component compounds reveal the neuroprotective potential in connection to Alzheimer's disease. It contains three herbs: Bokshin, Sukchangpo, and Wongi. P. Tenuifolia's primary ingredients are Xanthone glycosides, Triterpenoid saponins, and Oligosaccharides. Polygalasaponins and Etrahydrocolumbamine are the major components, and they've been widely used for more than a century to relieve mood and psychological illnesses, particularly in North Asian countries such as Korea, China, Japan, and Taiwan. P. Tenuifolia extract eliminates allergic illnesses such as eczema and contact dermatitis by modulating Protein kinase-A and Mitogen-protein kinase-38. In vitro and in vivo studies linking P. tenuifolia root ingredients to a variety of pharmacological effects pertinent to AD show that this species' isolates may function through polyvalency. In great health, people can take up to 250-300 mg per day. It was given in peer-reviewed studies at dosages of 100-150 mg many times each day. There is minimal evidence that it improves verbal memory in experimental animals.

Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells (혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과)

  • Choi, Woosoung;Song, Jina;Park, Mi-Hyeon;Yu, Heui Jong;Park, Heonyong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Platycodon grandiflorum A. De Candolle (Korean name, ‘Doraji’) is a perennial plant containing various triterpenoid saponins. The roots of this plant have traditionally been used as a food material in Korea. Here, we prepared a fermented P. grandiflorum extract (PG). Although it was previously reported that P. grandiflorum A. extract has a variety of physiological functionalities, including anti-inflammatory and anti-oxidant activities, little is known about its vascular functions. In this study, we executed a series of experiments to identify the effect of PG on endothelial cells. PG at a high concentration (100 μg/ml) was found to induce cell detachment, whereas PG at a low concentration (0.1 μg/ml) appeared to promote cell proliferation and migration in bovine aortic endothelial cells. The cell detachment induced by the high concentration was not associated with cell death, such as apoptosis, necrosis, and autophagy. In addition, we found that PG at the high concentration formed a small vesicular structure called an endothelial microparticle (EMP). The EMP was prepared by centrifugal fractionation and determined with flow cytometry and a microscope. Interestingly, PG-induced cell detachment was found to be mediated by EMP. We furthermore determined that PG at the low concentration activated Akt, a crucial cell-signaling molecule, and then controlled cell proliferation and migration. Overall, our findings suggest that PG at low doses maintains vascular stability by promoting endothelial cell proliferation, and enhances the efficacy of wound healing by cell proliferation and migration activity.

Inhibition of VLA-4/VCAM-1-mediated Cell Adhesion by Triterpenoid Saponins from Bupleurum falcatum L

  • Lee, Seung-Woong;Kim, Min-Seok;Lim, Ju-Hwan;Chang, Jong-Sun;Ling, Jin;Bae, Ki-Hwan;Lee, Woo-Song;Rho, Mun-Chual
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1931-1936
    • /
    • 2010
  • Discovery and isolation of compounds capable of blocking the interactions between VCAM-1 and VLA-4, a major pair of adhesion molecules contributing to the different steps of leukocyte migration across the endothelium in inflammatory responses, has been a major goal of this lab. Through bioactivity-guided fractionation, five saikosaponins were subsequently isolated from the methanol extracts of the roots of Bupleurum falcatum L. Their structures were elucidated by spectroscopic analysis ($^1H-$, $^{13}C$-NMR and 2D-NMR), as follows, saikosaponins: A (1); D (2); C (3); B3 (4); B4 (5). Compounds 1 and 2 inhibited interaction of sVCAM-1 and VLA-4 of THP-1 cells with respective $IC_{50}$ values of 7.8 and 1.7 ${\mu}M$. The aglycone structure of 2 also showed cell adhesion inhibitory activity with an $IC_{50}$ value of 21.1 ${\mu}M$. With these results, we suspect these two saikosaponins from the Bupleurum falcatum L. roots to be prime candidates for therapeutic strategies towards inflammation.