• Title/Summary/Keyword: Trihalomethanes(THMs)

Search Result 72, Processing Time 0.029 seconds

The Characteristics of THMs Production by Different Disinfection Methods in Swimming Pools Water (수영장 욕조수의 소독방법에 따른 THMs 발생 특성)

  • Lee Jin;Ha Kwang-Tae;Zoh Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.171-178
    • /
    • 2006
  • The objectives of this study were to investigate the formation of trihalomethanes(THMs) and to compare the concentration level of THMs of swimming pools water by different disinfection methods such as chlorine, ozone-chlorine, and salt brine electrolysis generator (SBEG). The concentration of chloroform was the highest in the chlorine system, and the SBEG was the highest in the production of bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform. The average concentration of total trihalomethanes (TTHMs) in three disinfection systems were $64.5{\pm}27.4mg/l(SBEG),\;43.8{\pm}22.3mg/l(chlorine)$, and $30.6{\pm}16.1mg/l(ozone-chlorine)$, respectively. In chlorine and ozone-chlorine disinfection system, chloroform concentration was highest, followed by BDCN, then DBCM. In the SBEG, TTHMs was composed of 42% of chloroform, 28.9% of bromoform, 15.1% of BDCM and 14% of DBCM, respectively. The strongest correlation was obtained in the levels of chloroform and TTHMs in chlorine, and ozone-chlorine disinfection systems from both indoor and outdoor swimming pools ($r=0.989{\sim}0.999$, p<0.01). In the SBEG, the levels of BDCM and TTHMs showed a good correlation (r=0.913, p<0.01). In chlorine and ozone-chlorine disinfection systems at indoor swimming pools, pH, TOC and $KMnO_4$ consumption showed strong correlation with chloroform and TTHMs concentrations (p<0.01). In the SBEG, pH and TOC were also strongly correlated with chloroform (p<0.01). pH and TTHMs were correlated as well (p<0.05).

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

DBPs Variation by Chlorination and Preozonation in Drinking Water (염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화)

  • Kim, Junsung;Choi, Yongwook;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

Alteration of Lactic Dehydrogenase Activity and Isozyme of Rat Tissues Treated with Trihalomethanes (Trihalomethane을 경구투여한 흰쥐조직에서 LDH의 활성도 및 Isozyme양상의 변화)

  • Shin, Dong-Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 1983
  • There has been some evidence concerning the fact that trihalomethanes(THMs), toxic chlorinated compounds, may be present in drinking water. One of the important methodologies to evaluate the toxicity of THMs is to determine enzyme alteration in experimental animal tissues after treatment. This study was intended to investigate how lactic dehydrogenase(LDH) of rat tissues is affected by administration of chloroform($CHCl_3$) and dichloromonobromomethane($CHCl_2\;Br$). THMs, high dose(1/10 LD50) or low dose(1/50 LD50) of $CHCl_3$ or $CHCl_{2}Br$ were administered orally to experimental rats for 4 or 8 weeks. The treated groups of rats were sacrificed to determine LDH specific activity and isozyme pattern in various organs which were liver, thigh muscle, kidney and brain. The conclusions were obtained as follows: 1. Alteration of LDH activities and isozyme patterns were revealed before morphologic changes in tissues. 2. The LDH specific activities were increased significantly in liver and brain after administration of high concentrations of $CHCl_3$ and $CHCl_{2}Br$ for 4 weeks respectively. Otherwise, they were decreased significantly in liver, muscle and kidney after administration for 8 weeks. 3. The isozyme activities of LDH-4 and LDH-5 were increased in muscle, brain, and especially the liver. 4. It was more distinct for the decrement of LDH H-type isozyme than the increment of M-type isozyme in muscle.

  • PDF

Characteristics of Disinfection Byproducts in Tap Water of Seoul (서울시 수돗물 배급수 계통에서 소독부산물 분포특성)

  • Chang, Hyun Seong;Lee, Do Weon;Kim, Chang Mo;Lee, In Suk;Lee, Su Won;Park, Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.216-226
    • /
    • 2006
  • Total trihalomethanes (THMs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) that are the major disinfection byproducts (DBPs) are monitored continuously in drinking water in Seoul. Study on characteristics of DBPs is crucial to judge the safety of drinking water in Seoul. Analysis of THMs, haloacetonitriles (HANs), chloral hydrate (CH), and haloacetic acids (HAAs) was carried out in several distribution systems from January 2002 to December 2004. The concentration of THMs was 0.015 mg/L in purified water, 0.019 mg/L in tapwater by direct service, and 0.023 mg/L in tapwater through watertank, respectively. It might be due to the increased contact time with chlorine by a process of the distribution system. And the other DBPs show a tendency to increase in its concentration by a process of the distribution system. Also, in summer, the concentration of DBPs was higher than in spring and winter. It might be due to the higher temperature of water in summer. In all cases, the quantities of detected DBPs were 4-6 times lower than those of regulation limits of drinking water in Seoul. In view of these results, the tapwater in Seoul is good to drink it all the times.

Effect of Chlorine Dioxide on the treatment of Drinking Water Supply (이산화염소($CIO_2$)의 상수정수처리 효과에 관하여)

  • Chung, Yong;Lee, Bo-Young
    • 수도
    • /
    • s.44
    • /
    • pp.6-12
    • /
    • 1988
  • This study was performed to measure the elimination effects of chlorine dioxide on phenol compounds, trihalomethanes (THMs) and algae in drinking water supply. The raw and chlorinated water were treated with 0.5ppm of chlorine dioxide. The phenols contained 0.052mg/1, 0.019mg/1 of raw and treatedwater was absolutely destroyed. The THMs was reduced to 50-60% of the concentration and the algae was inhibited to about 50% of the growth.

  • PDF

The Effect of Porosity of Seiving Particles on the Romoval Efficiency of Organic Substances via Biofilter in the Fixed Bed

  • Park Young Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • This paper was investigated to clarify the possibility of a biodegradation of materials adsorbed on different porous granular-activated carbons (GACs) such as coal-& coconut-based GAC. Total organic carbon, humic substance and ammonia were used to compare their removal efficiencies. The objective of this study is to determine the adsorption capacity of bioregenerated GAC. When raw water reacted with chloride, the yield of THMs increased as a function of the input amount of chloride. The formation of trihalomethanes (THMs) was investigated in water treated with chlorine when humic acid was used as THM precursor. As the input amount of chloride in raw water increased by two or five-fold to remove the $NH_3$, the chloroform of the THMs significantly increased also five or ten-fold. It was found that the chloroform was significantly removed by the treatment of biological activated carbon (BAG) in comparison with the ozone treatment, and the removal efficiency of THMs in coal-typed GAC was $10-30\%$ better than coconut-typed GAC due to the biological degradation on the surface of the activated carbons.

Electrochemical Removal Characteristics of Disinfection By-products by Chlorination in Drinking Water (음용수내 발암물질인 염소 소독부산물의 전기화학적 제거 특성)

  • Kwon, Sun-Woo;Lee, Jong-Dae;Sin, Jang-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.364-369
    • /
    • 2004
  • It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.

A Study on Haloacetic Acids Formation Potentials by Chlorination in Drinking Water (상수의 염소처리시 생성되는 소독부산물 중 Haloacetic acid류의 생성능에 관한 연구 - 일부 상수원수를 대상으로 -)

  • Chung, Yong;Shin, Dong-Chun;Lim, Young-Wook;Kim, Jun-Sung;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.23-29
    • /
    • 1997
  • The main reason of applying chlorination is to sterilize microbes existing in the drinking water treatment. But chlorination could lead to the formation of disinfection by-products (DBPs) by the reaction of free chlorine with humic substance in the water. Especially the DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloketones (HKs) exist in the tap water. The US environmental protection agency (US EPA) defines that trihalomethanes, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile among DBPs are probable/possible human carcinogens. US EPA suggests maximum contaminant levels (MCLs) for THMs (80$\mu$g/L) and HAAs (60$\mu$g/L) in drinking water. In Korea, THMs in drinking water has been surveyed but DBPs in general has not been studied in drinking water practically. Therefore only THMs have been regulating as criteria compounds since 1990 but neither HAAs nor HANs. Researches on HAAs are yet to be found. HAA formation potentials(HAAFPs) have not been practiced. HAAs depends on the characteristics of water sources by chlorination. In this study, HAAFPs from three distinct sources were investigated by laboratory chlorination experiments. This study was performed to measure the level of HAAs in drinking water in Seoul area. At April 1996, after collecting the raw waters from the three sites with the different properties, the water samples were chlorinated at various conditions(pH 5.5, pH 7.0 and without pH adjustment) in the state of raw water to have 0. 5mg/L of residual chlorine concentration. And the raw water, treated water, and tap water of water treatment were collected to measure the HAAs concentration. The quantitative analysis of HAAs was conducted by US EPA methods.

  • PDF

Comparison of Household Trihalomethanes (THMs) Exposure Associated with Use of Municipal Tap Water Treated with Chlorine or Ozone-Chlorine (염소살균과 오존-염소살균 수도수의 사용과 관련한 가정 트리할로메탄 노출 비교평가)

  • Jo, Wan Geun;Gwon, Gi Dong;Dong, Jong In;Jeong, Yong
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.627-635
    • /
    • 2004
  • Evaluated were household THMs exposure associated with the use of municipal tap water treated with chlorine and with ozone-chlorine. The current study measured the THMs concentrations in the tap water and indoor and outdoor air in the two types of household, along with an estimation of THMs exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THMs in all three media, yet no bromoform was detected in any sample. Contrary to previous findings, the fall water THMs concentrations exhibited no significant difference between the chlorine and ozone-chlorine treated water. However, the spring median chloroform concentration in the tap water treated with chlorine (17.6 ppb) was 1.3 times higher than that in the tap water treated with ozone-chlorine (13.4 ppb). It is suggested that the effects of the water parameters should be considered when evaluating the advantage of ozone-chlorine disinfection for THMs formation over chlorine disinfection. The indoor air THMs concentration trend was also consistent with the water concentration trend, yet the outdoor air THMs concentrations did not differ significantly between the two types of household. The indoor to outdoor air concentration ratios were comparable with previous studies. The THMs exposure estimates from water ingestion, showering, and the inhalation of indoor air suggested that, for the residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water use, rather than the indoor air. The THMs exposure estimates from tap water ingestion were similar to those from showering.