• Title/Summary/Keyword: Trigonometric approximation

Search Result 19, Processing Time 0.026 seconds

TRIGONOMETRIC JACKSON INTEGRALS APPROXIMATION BY A k-GENERALIZED MODULUS OF SMOOTHNESS

  • Hawraa Abbas, Almurieb;Zainab Abdulmunim, Sharba;Mayada Ali, Kareem
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.807-812
    • /
    • 2022
  • The need for smoothness measures emerged by mathematicians working in the fields of approximation theory, functional analysis and real analysis. In the present paper, a new version of generalized modulus of smoothness is studied. The aim of defining that modulus, is to find the degree of best Lp functions approximation via trigonometric polynomials. We benefit from Jackson integrals to arrive to the essential approximation theorems.

APPROXIMATION ORDER TO A FUNCTION IN $C^1$[0, 1] AND ITS DERIVATIVE BY A FEEDFOWARD NEURAL NETWORK

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.139-147
    • /
    • 2009
  • We study the neural network approximation to a function in $C^1$[0, 1] and its derivative. In [3], we used even trigonometric polynomials in order to get an approximation order to a function in $L_p$ space. In this paper, we show the simultaneous approximation order to a function in $C^1$[0, 1] using a Bernstein polynomial and a feedforward neural network. Our proofs are constructive.

  • PDF

Exponential family of circular distributions

  • Kim, Sung-Su
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1217-1222
    • /
    • 2011
  • In this paper, we show that any circular density can be closely approximated by an exponential family of distributions. Therefore we propose an exponential family of distributions as a new family of circular distributions, which is absolutely suitable to model any shape of circular distributions. In this family of circular distributions, the trigonometric moments are found to be the uniformly minimum variance unbiased estimators (UMVUEs) of the parameters of distribution. Simulation result and goodness of fit test using an asymmetric real data set show usefulness of the novel circular distribution.

A STUDY OF SIMULTANEOUS APPROXIMATION BY NEURAL NETWORKS

  • Hahm, N.;Hong, B.I.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.317-324
    • /
    • 2008
  • This paper shows the degree of simultaneous neural network approximation for a target function in $C^r$[-1, 1] and its first derivative. We use the Jackson's theorem for differentiable functions to get a degree of approximation to a target function by algebraic polynomials and trigonometric polynomials. We also make use of the de La Vall$\grave{e}$e Poussin sum to get an approximation order by algebraic polynomials to the derivative of a target function. By showing that the divided difference with a generalized translation network can be arbitrarily closed to algebraic polynomials on [-1, 1], we obtain the degree of simultaneous approximation.

  • PDF

Cubic Equations in General Saddlepoint Approximations

  • Lee, Young-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.555-563
    • /
    • 2002
  • This paper discusses cubic equations in general saddlepoint approximations. Exact roots are found for various cases by trigonometric identities, the root which is appropriate for the general saddlepoint approximations is selected and discussed, and the defective cases in which the general saddlepoint approximations cannot be used are found.

APPROXIMATION OF LIPSCHITZ CLASS BY DEFERRED-GENERALIZED NÖRLUND (D𝛾𝛽.Npq) PRODUCT SUMMABILITY MEANS

  • JITENDRA KUMAR KUSHWAHA;LAXMI RATHOUR;LAKSHMI NARAYAN MISHRA;KRISHNA KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.1057-1069
    • /
    • 2023
  • In this paper, we have determined the degree of approximation of function belonging of Lipschitz class by using Deferred-Generalized Nörlund (D𝛾𝛽.Npq) means of Fourier series and conjugate series of Fourier series, where {pn} and {qn} is a non-increasing sequence. So that results of DEGER and BAYINDIR [23] become special cases of our results.

Solving Dynamic Equation Using Combination of Both Trigonometric and Hyperbolic Cosine Functions for Approximating Acceleration

  • Quoc Do Kien;Phuoc Nguyen Trong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.481-486
    • /
    • 2005
  • This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.

Study on the Dynamic Instability of Star-Dome Structures (스타돔의 동적 불안정 현상에 관한 연구)

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.72-77
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method, and study about parametrical instability of star-dome structures, which is subjected to harmonically pulsating load. When calculating stiffness matrix, we consider elastic stiffness and geometrical stiffness simultaneously. In equation of motion, we represent displacements and accelerations by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability region finally.

  • PDF

ON THE SUPERSTABILITY FOR THE p-POWER-RADICAL SINE FUNCTIONAL EQUATION

  • Gwang Hui Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.801-812
    • /
    • 2023
  • In this paper, we investigate the superstability for the p-power-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from an approximation of the p-power-radical functional equation: $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)h(y),$$ where p is an odd positive integer and f, g, h are complex valued functions. Furthermore, the obtained results are extended to Banach algebras.