• 제목/요약/키워드: Tridiagonal algebras

검색결과 12건 처리시간 0.015초

ISOMETRIES OF (2)}_{2n}$

  • Park, Taeg-Young
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.609-620
    • /
    • 1995
  • In this paper, we introduce the generalization $A^{(2)}_{2n}$ of tridiagonal algebras $A_{2n}$ and investigate the isometries of such algebras.

  • PDF

HILBERT-SCHMIDT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.227-233
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation AX$\sub$i/=Y$\sub$i/, for i=1,2, ‥‥, R. In this article, we investigate Hilbert-Schmidt interpolation for operators in tridiagonal algebras.

Isometries of $B_{2n - (T_0)}

  • Park, Taeg-Young
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.593-608
    • /
    • 1995
  • The study of self-adjoint operator algebras on Hilbert space is well established, with a long history including some of the strongest mathematicians of the twentieth century. By contrast, non-self-adjoint CSL-algebras, particularly reflexive algebras, are only begins to be studied by W. B. Wrveson [1] 1974.

  • PDF

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

ISOMORPHISMS OF CERTAIN TRIDIAGONAL ALGEBRAS

  • Choi, Taeg-Young;Kim, Si-Ju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권1호
    • /
    • pp.49-60
    • /
    • 2000
  • We will characterize isomorphisms from the adjoint of a certain tridiag-onal algebra $AlgL_{2n}$ onto $AlgL_{2n}$. In this paper the following are proved: A map $\Phi{\;}:{\;}(AlgL_{2n})^{*}{\;}{\longrightarrow}{\;}AlgL_{2n}$ is an isomorphism if and only if there exists an operator S in $AlgL_{2n}$ with all diagonal entries are 1 and an invertible backward diagonal operator B such that ${\Phi}(A){\;}={\;}SBAB^{-1}S^{-1}$.

  • PDF

LIE IDEALS IN TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.351-361
    • /
    • 2015
  • We give examples of Lie ideals in a tridiagonal algebra $Alg\mathcal{L}_{\infty}$ and study some properties of Lie ideals in $Alg\mathcal{L}_{\infty}$. We also investigate relationships between Lie ideals in $Alg\mathcal{L}_{\infty}$. Let k be a fixed natural number. Let $\mathcal{A}$ be a linear manifold in $Alg\mathcal{L}_{\infty}$ such that $T_{(2k-1,2k)}=0$ for all $T{\in}\mathcal{A}$. Then $\mathcal{A}$ is a Lie ideal if and only if $T_{(2k-1,2k-1)}=T_{(2k,2k)}$ for all $T{\in}\mathcal{A}$.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo;Kang, Joo-Ho
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.63-69
    • /
    • 2002
  • Given vectors x and y in a Hilbert space, an intepolating operator is a bounded operator T such that Tx=y. an interpolating operator for n vectors satisfies the equation Tx$_{i}$=y, for i=1, 2,…, n. In this article, we obtained the fellowing : Let x = (x$_{i}$) and y = (y$_{i}$) be two vectors in H such that x$_{i}$$\neq$0 for all i = 1, 2,…. Then the following statements are equivalent. (1) There exists an operator A in AlgL such that Ax = y, A is a trace-class operator and every E in L reduces A. (2) (equation omitted).mitted).

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....