• Title/Summary/Keyword: Triangulated Irregular network(TIN)

Search Result 30, Processing Time 0.023 seconds

Watershed Delineation Algorithm Using Kruskal's Algorithm and Triangulated Irregular Network (크루스칼 알고리즘과 불규칙 삼각망을 이용한 유역 추출 알고리즘)

  • Park Mee-Jeong;Heo Hyun;Kim Tae-Gon;Suh Kyo;Lee Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.3-12
    • /
    • 2006
  • Watershed is the land area that contributes runoff to an outlet point. To delineate an watershed, watershed delineation using GIS that contains grid data structure is the most general method. Some researchers have studied to implement algorithms that revise the TIN topography since it is difficult to delineate watershed boundary more accurately. In this study kruskal's greedy algorithm and triangulated irregular network (TIN) were used to delineate a watershed. This method does not require a conversion from to DEM in grid and automatically obtain(generates) the oulet points. Delineation algorithm was tested in Geosan-gun, Chung-cheongbuk-do and get small watershed areas. Finally, kruskal's algorithm could operate more precisely with revision algorithm.

Fast Triangulation of Terrain Data through Unique Point Extraction (특이점 추출을 통한 지형데이터의 빠른 삼각망 생성)

  • 전경훈;구자영
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.457-464
    • /
    • 2003
  • Triangulated irregular network is one of the most frequently used terrain modeling methods. It represents terrain precisely using only a small amount of data, and enables fast rendering of terrain. In this paper, ridges and valleys are extracted from the terrain, and used as a set of vertices for the construction of triangulated irregular network. An experiment shows the new method reduces the time for construction of the triangulated irregular network significantly with almost equal amount of induced error.

A New Technology of TIN for Port and Harbor (항만 공사에도 TIN시대 개막)

  • 김동휘
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.31-31
    • /
    • 1995
  • TIN은 Triangulated Irregular Network의 약자로 불규칙한 대소삼각형의 집합으로 삼각망을 구성, 지표면을 Digital Terrain Model로 만드는 기법이다. 지표면(해저지형포함)은 수치화된 등고선의 벡터 데이터와 점의 표고데이터 또는 표고 평행배열의 Raster데이터로부터 모형화되며 또는 제 3의 방법인 TIN에 의해 모형화된다. 이 TIN에 의한 도형은 컴퓨터가 위성측량, 항공측량, 광파측량 또는 음차수심측량등 측량결과를 받아 어떤 특정 프로그램을 구동 삼각형의 정점에 해당하는 점의 X, Y, Z의 좌표로부터 닫한 삼각형을 작성한다. (중략)

  • PDF

A Fast Processing Algorithm for Lidar Data Compression Using Second Generation Wavelets

  • Pradhan B.;Sandeep K.;Mansor Shattri;Ramli Abdul Rahman;Mohamed Sharif Abdul Rashid B.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2006
  • The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the UDAR data compression. A newly developed data compression approach to approximate the UDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become an important research topic for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original UDAR data. The results show that this method can be used for significant reduction of data set.

A Study on the Digitizing of Terrain by Triangulated Irregular Networks (비정규삼각망 데이타구조에 의한 지형의 수치화)

  • Lee, Suck Chan;Kho, Young Ho;Lee, Chang Kyung;Choi, Byoung Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.325-334
    • /
    • 1994
  • Modern society is the age of a high state of information and demands more effective land information. Moreover, because the use of land in Korea is intensive, Korea requires more synthetic and systematic geographical information for which the digitizing of terrain is prerequisite. This study aims at development of the data structure which is suitable to the digitizing of terrain for Geographical Information System(GIS). Regular grid has been used generally in Digital Terrain Model(DTM), for it is easy to manipulate. But regular cannot reflect well the terrain surface features. In the meantime, Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features and is useful in various applications. In this paper the method which constructs effective DTM by improving TIN has been researched.

  • PDF

TIN Compression for Partial Visualization and Modification (부분적 시각화와 수정을 위한 TIN 압축)

  • 박동규;조환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.601-603
    • /
    • 1999
  • 대부분의 다면체 모델 데이터의 표면과 지리 정보 시스템을 위한 지형 데이터는 삼각 분할을 통하여 만들어진 불규칙 삼각형 네트웍(Triangulated Irregular Network:TIN) 구조를 가지고 있다. 대용량 TIN 데이터를 그래픽스 시스템에서 빠르게 시각화 하는데는 많은 어려움이 있으므로, 일반적으로 TIN 데이터의 특징을 이용하여 압축된 데이터를 이용한다. 그러나 압축한 TIN 데이터는 부분적인 수정과 같은 연산을 수행하기 위하여 전체 데이터를 디코딩하고 다시 인코딩하는 과정을 반복하여 수행하므로 이같은 연산이 자주 발생하는 응용분야에는 부적합하다. 본 논문은 이러한 문제의 해결방안으로 삼각형 메쉬를 삼각형 스트립으로 재구성 한 후에 이 삼각형 스트립을 정점 체인과 각 정점의 차수 정보를 이용하는 저장하는 압축 알고리즘과 함께 이 알고리즘이 부분적인 불규칙 삼각망 수정에 유용하게 적용될 수 있음을 제시한다. 제안된 알고리즘은 각각의 정점 체인이 독립적으로 인코딩 가능하므로 불규칙 삼각망 정보를 수정할 경우 최소한의 인코딩과 디코딩으로 불규칙 삼각망을 수정할 수 있다.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Development of the Stress Path Search Model using Triangulated Irregular Network and Refined Evolutionary Structural Optimization (불규칙 삼각망과 수정된 진화론적 구조 최적화 기법을 이용한 평면구조의 응력 경로 탐색 모델의 개발)

  • Lee, Hyung-Jin;Choi, Won;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.37-46
    • /
    • 2007
  • In designing the structure, the stress path is the basic data. But the stress path is not standardized to analysis the structure. So the one-dimensional frame element structure model with the triangle irregular network is used to solve the problem. And the refined evolutionary structural optimization(RESO) used in structural topology optimization is applied to this study. Through this process, the search method of the stress path is advanced and the burden of the calculation. is reduced.

A study on the 3D Terrain Modelling Technique based on DEM data (DEM 데이타에 의한 3차원 지형 모델링 기법에 관한 연구)

  • Choi, Jeong-Dan;Jeong, Yun-Jong;Lee, Cheol-Won;Yoon, Kyung-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.99-108
    • /
    • 1994
  • In this thesis, we propose the 3D terrain modelling method for the better understanding of the geographic information. The process of 3D terrain medelling consists of three steps. The first step is to obtain real-world data from satellite images and stored in the form of DEM(Digital Elevation Model). The second one is to extract the meaningful data from DEM data based on LOD(Level Of Detail). And the third is to construct the 3D surface by TIN(Triangulated Irregular Network) with the extracted meaingful data. The proposed dynamic TIN reconstruction algorithm locally reconstruct the existed TIN model with the additional a new point. In this way, we can construct the TIN with the reduced time and can simulated 3D terrain model in real time.

  • PDF

The Determination of Earthwork Volume using LiDAR Data (LiDAR 데이터를 이용한 토공량 산정)

  • Kang Joon-Mook;Yoon Hee-Cheon;Min Kwan-Sik;We Gwang-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.533-540
    • /
    • 2006
  • In recent years, civil-engineering work is desired the terrain information to be more efficient in earthwork volume calculation. One method for collecting elevation data is LiDAR. Lidar data was used to produce rapidly an accurate digital elevation model of the terrain, compared with the conventional ground surveys, photogrammetty, and remote sensing. Raw Lidar data is combined with GPS positional data to georeference the data sets. Lidar data is edited and processed to generate surface models, elevation models, and contours. Here we can either create a Tin Volume Surface or a Gird Volume Surface. Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features. As we have seen, we search the efficiency for earthwork volume calculation using Lidar data. One conclusion we can draw from this study is that Lidar data is more accurate result than digital map in the calculation of earthwork volume.

  • PDF