• Title/Summary/Keyword: Triangular fin

Search Result 28, Processing Time 0.024 seconds

Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin (삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화)

  • Kang, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

Errors in the Triangular Fin Analysis under Assuming the Fin Tip is Insulated (핀끝이 절연되었다는 가정하에 삼각핀 해석에서의 오차)

  • 강형석;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1783-1788
    • /
    • 1994
  • A comparison of the temperature distributions along the wall and center of the fin and the heat loss from the fin, computed assuming the fin tip is insulated and assuming it is not insulated in a triangular fin, is performed by the two-dimensional forced analytic method. When the fin tip is not insulated, a comparison between forced analytic method and analytic method is made in the heat loss and temperature along the fin wall. The value of Biot number varies from 0.01 to 1.0. The root temperature and surrounding convection coefficients of the fin are assumed as a constant. The results are (1) the analysis on the triangular fin assuming the fin tip is insulated does not produce a good value as compared to that of not-insulated case as the non-dimensional fin length decreases and as the value of Biot number increases and (2) the errors between forced analytic method and analytic method are very small, but the former method is better for computer running time and accuracy.

Performance Analysis of a Thermally Asymmetric Triangular Fin (열적 비대칭 삼각 휜의 성능해석)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.66-73
    • /
    • 2002
  • Fin effectiveness and efficiency of a thermally asymmetric triangular fin are represented as a function of the ratio of fin lower surface Biot number to upper surface Biot number and the non-dimensional fin length. For this analysis, two dimensional separation of variables method is used. When fin effectiveness is 2 and efficiency is 90%, the relationship between the non-dimensional fin length and the ratio of fin lower stir(ace Biot number to upper surface Biot number is shown. The relationship between the non-dimensional fin length and the upper surface Biot number for the same condition is also presented.

Performance Analysis of Tri-gate FinFET for Different Fin Shape and Source/Drain Structures (Tri-gate FinFET의 fin 및 소스/드레인 구조 변화에 따른 소자 성능 분석)

  • Choe, SeongSik;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.71-81
    • /
    • 2014
  • In this paper, the performance variations of tri-gate FinFET are analyzed for different fin shapes and source/drain epitaxy types using a 3D device simulator(Sentaurus). If the fin shape changes from a rectangular shape to a triangular shape, the threshold voltage increases due to a non-uniform potential distribution, the off-current decreases by 72.23%, and the gate capacitance decreases by 16.01%. In order to analyze the device performance change from the structural change of the source/drain epitaxy, we compared the grown on the fin (grown-on-fin) structure and grown after the fin etch (etched-fin) structure. 3-stage ring oscillator was simulated using Sentaurus mixed-mode, and the energy-delay products are derived for the different fin and source/drain shapes. The FinFET device with triangular-shaped fin with etched-fin source/drain type shows the minimum the ring oscillator delay and energy-delay product.

Performance Analysis on the Various Shapes of Symmetric Fins (여러 형상의 대칭적인 핀의 성능 해석)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.97-104
    • /
    • 1996
  • A comparison of the fin effectiveness, thermal resistance, and fin efficiency between the symmetric triangular fin and the symmetric trapezoidal fin which has various slopes of the fin side is made. Also the relation between Biot number and the non-dimensional fin length for equal amount of heat loss from these fins is shown. For these analyses, a forced analytic method is used. In particular, the equation for the heat loss is used simultaneously for both the symmetric triangular fin and the symmetric trapezoidal fins by just adjusting the value of the slope factor. The value of Biot number varies from 0.01 to 1.0 and the non-dimensional fin length varies from 0.01 to 10. For simplicity, the root temperature and fin's surrounding convection coefficients are assumed constant and the condition is assumed to be steady state.

  • PDF

The Effect of Fin Tip on the Triangular Fin (삼각핀에 대한 핀끝의 영향)

  • Kang, Hyung Suk
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.81-87
    • /
    • 1993
  • Two dimensional analysis on the triangular fin for both the insulated fin tip and non-insulated fin tip and one dimensional analysis on that when the temperature of the fin tip is finite are made. The effect of the fin tip is shown by comparing the heat loss from the fin and the temperature along the fin length varing the non-dimensional fin length and Biot number for each three cases. The results are following. When the non-dimensional fin length is very short, the relative error of the heat loss from the fin with insulated fin tip to that from the fin with non-insulated fin tip is very high. The value of the temperature variation along the non-dimensional fin length is minimum for the finite fin tip temperature using one dimensional analysis and is maximum for the insulated fin tip using two dimensional anaysis.

  • PDF

A Heat Transfer Analysis of a Thermally Asymmetric Triangular Fin; Based on Fin Tip Effect (열적 비대칭 삼각 핀의 열전달 해석; 핀 끝 효과에 기준)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.21-26
    • /
    • 2002
  • The non-dimensional heat loss from a thermally asymmetric triangular fin is investigated as a function of a ratio of upper and lower surface Biot numbers (Bi2/Bi1), the non-dimensional fin length and tip surface Biot number using the two-dimensional separation of variables method. The effect of fin tip surface Biot number on the variation of the non-dimensional temperature along the sloped upper and lower surfaces for the thermally asymmetric condition is presented. The relationship between the non-dimensional fin length and the fin tip surface Biot number for equal amount of heat loss is also discussed as well as the relationship between upper surface Biot number and tip surface Biot number for equal amount of heat loss.

  • PDF

Numerical Analysis in Heat Transfer of a Triangular Fin (삼각휜 열전달의 수치해석)

  • Chun, Sang-Myung;Kwon, Young-Pil
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.52-57
    • /
    • 1982
  • One-dimensional approximation for fin problems is widely used in current texts and industrial practice. The errors caused by this approximation is analysed for a longitudinal triangular fin by the numerical solution of two-dimensional fin equation. Two-dimensional solution is obtained by the finite element method and com pared with the one-dimensional esact solution. The results show that total heat transfer and fin efficiency are overestimated by the one-dimensional approximation. The factors which cause these errors are the Biot number (Bi) and the ratio of fin length to half the thickness (L/a). When Bi is smaller than 1.0 these errors are smaller than $10\%$, but when Bi is larger than 5.0 they are a few ten percents. Fin efficiency obtaned by one-dimensional and long fin assumption is valid only then Bi is small and L/a is large.

  • PDF

Heat Transfer Characteristics for Internally Triangular finned Rotating Heat Pipes (내부(內部)에 삼각형(三角形) 핀이 부착(附着)된 회전형(回轉型) 히이트파이프의 전열특성(傳熱特性))

  • Kwon, Sun-Sok;Jun, Chul-Ho;Jang, Yeong-Suk;Seo, Hae-Sung
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.43-52
    • /
    • 1989
  • Heat transfer rate and heat flux from the condenser with internally triangular fins rotating heat pipe has been numerically studied by finite element method. The results of numerical and P.J. Martos' experimental showed good agreement and it was able to predict to the performance of a rotating heat pipe. By increasing fin half angle or fin height, heat transfer rate from condenser was increased slightly but heat flux was decreased. By increasing condenser radius or r.p.m. of rotating heat pipe, heat transfer rate and heat flux was increased rapidly. Heat transfer rate was rapidly increased with increasing fin numbers in case of few fm numbers but slowly increased at many fin numbers. So the optimum fin numbers were a half of maximum fin numbers which was able to install in the condenser of a rotating heat pipe.

  • PDF

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.