• Title/Summary/Keyword: Trenchless construction

Search Result 20, Processing Time 0.027 seconds

Design and Fundamental Experiment on Trenchless Replacement of Old Sewerage (노후하수관 교체시 비굴착방식 신공법기술개발)

  • Noh, Jong-Ho;Lee, Young-Ki;Roh, Hong-Koo;Han, Min-Ho;Lee, Sung-Chul;Lim, Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1327-1331
    • /
    • 2008
  • The study aims to enhance the trenchless replacement of old sewerage. The trenchless replacement was designed as real size and tested in the field of construction. This trenchless replacement was new technology in construction. The result was good performance in the construction. In the future, the trenchless replacement should be use as the exchange equipment of old sewerage.

  • PDF

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

Evaluation of Design Equation and Stability for Trenchless Pipe Liner System with Boundary Treatment (비굴착 전체보수용 라이너의 두께 설계식 및 말단부 처리에 따른 라이너의 안정성 검토 연구)

  • Park, Jong-Sup;Song, Ho-Myeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1166-1172
    • /
    • 2007
  • Drainage pipeline system repaired by trenchless technology using liners can be defined between partial and entire collapse. The liners in the partial collapse pipeline are subjected to only uniform groundwater pressure on the surface. This research evaluates practical and useful cured-in-placed pipe (CIPP) design equations based on experimental results and finite element analysis results. Also, stability evaluation of pipe liner system with edge treatment is performed using finite element analysis. The CIPP equation should be used to design liner pipe system.

  • PDF

Development of Trenchless Tunneling Method Using Pressurizing Support and Its Field Application (가압식 지보를 이용한 비개착 터널공법 개발 및 현장적용 사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.17-30
    • /
    • 2012
  • A new trenchless tunneling method using pressurizing support has been developed. As it overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies the pressure corresponding to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways such as numerical tests and various model tests. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long road tunnel that passes under Yeongdong Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months. It decreases the construction period to 35% compared to that of conventional methods, and ground displacement was almost negligible.

A numerical study on the three-dimensional ground movement by the trenchless construction method of concrete box by a square steel pipe supporting system (사각형 강관을 이용한 비개착 시공에 따른 지반거동의 분석: 수치해석)

  • Choi, Soon-Wook;Park, Young-Taek;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Ki Taek;Baek, Yong Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.469-484
    • /
    • 2012
  • This study aims to numerically investigate ground movement around a square steel pipe as well as a group of square steel pipes induced by its and their ground penetration for trenchless construction of a concrete box. From numerical results, ground movement induced by a square steel pipe is much more dominantly governed by vertical displacement rather than horizontal displacement. Ground settlement induced by pipe penetration is much larger as the overburden becomes lower. The settlement is also shown to be slightly dependent upon the sequence of pipe penetration. More careful construction management is highly in demand during the penetration of upper pipes since their induced settlement occupies approximately 75 percent of total ground settlement after the whole construction of steel pipes.

A Case Study on Construction of Front-Jacking method in Daejeon E.W. perforate Road Project (대전 동서관통도로 Front-Jacking공법 시공사례)

  • Kim Yong-Il;Hwang Nak-Yeon;Cha Jong-Whi;Jang Sung-Wook;Lee Nai-Yong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.646-654
    • /
    • 2005
  • The crossing construction under railroad have two methods which are cut and cover and trenchless method. First, cut and cover method is an extremely limited method concerning non-running time. Whereas, trenchless method is free from restriction such as train speed and running time, and has the strong points of safe and rapid construction. Front Jacking method, one of the trenchless methods, is frequently applied recently due to its stability during construction and vantage of assuring schedule reliability. The procedure is that after minimizing interlocking friction with structure and earth pressure due to jacking the small steel tube, pulling the precast box manufactured at the field in the ground using PC strand and hydraulic Jack. This method is able to be applied regardless of section size and length of box and condition of soil. And that is also pro-environmental. This paper presents the case of Daejeon E. W. perforate Road Project applied with the Front Jacking method.

  • PDF

A case study on perforation under Daejeon station building by Front-Jacking method (Front-Jacking공법에 의한 대전역사 하부 관통사례)

  • Kim, Yong-Il;Hwang, Nak-Yeon;Jeong, Du-Seok;Cha, Jong-Hwi;Lee, Nae-Yong
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.195-203
    • /
    • 2006
  • The crossing construction under railroad have two methods which are cut and cover and trenchless method. first, cut and cover method is an extremely limited method concerning non-running time. Whereas, trenchless method is free from restriction such as train speed and running time, and has the strong points of safe and rapid construction. Front Jacking method, one of the trenchless methods, is frequently applied recently due to its stability during construction and vantage of assuring schedule reliability. The procedure is that after minimizing interlocking friction with structure and earth pressure due to jacking the small steel tube, pulling the precast box manufactured at the field in the ground using PC strand and hydraulic Jack. This method is able to be applied regardless of section size and length of box and condition of ground. And that is also pro-environmental. This paper presents the case of Daejeon E. W. perforate Road Project applied with the Front Jacking method.

  • PDF

Restoration Efficiency Analysis of Expansive Material Implemented Trenchless Underground Cavity Restoration Method Varying Number and Location of Bore Holes (팽창재료를 이용한 지하 공동 비개착 복구공법에서 천공 개수 및 위치에 따른 복구효율 분석)

  • Choi, Byeong-Hyun;Lee, Kicheol;Lee, Junwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.25-37
    • /
    • 2019
  • The conventional representative underground cavity restoration methods, which are mainly open-cut methods, require high cost and long period of time for the restoration. Therefore, various trenchless restoration methods have been proposed to improve these disadvantages. The underground cavity restoration method using the expansive material proposed in this paper is one of the trenchless methods. This method fills the underground cavity with high quality backfill soils through the small hole(s) at asphalt layer and compacts backfill soils by insertion of the expansive material within the cavity. In this study, the restoration method using expansive material was constructed in acrylic chamber. The restoration efficiency of the method was analyzed by the fill ratio and degree of relative compaction according to the location and number of bore holes. As a result of the experiment, the restoration efficiency and the optimum construction location were found to be irrelevant.

Characterization of Repairing PVC profile for Trenchless Sewer Pipeline (비굴착 하수관로용 PVC 프로파일 보수재 특성 평가)

  • Park, Joon-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4977-4983
    • /
    • 2015
  • The full depth excavation induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are PVC strip and then the lab tests were followed by Korean Standard. We will treat the structure safety and pipe integrity of PVC profile more excellent than the profile have application to SPR. There is no side-effect to process and to satisfy the criteria of tensile strength, impact strength and softening temperature. The profile with resin adhesive showed no leakage of water at specific pressure.