• Title/Summary/Keyword: Tree-based algorithms

Search Result 385, Processing Time 0.028 seconds

Mobility Prediction Algorithms Using User Traces in Wireless Networks

  • Luong, Chuyen;Do, Son;Park, Hyukro;Choi, Deokjai
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.946-952
    • /
    • 2014
  • Mobility prediction is one of hot topics using location history information. It is useful for not only user-level applications such as people finder and recommendation sharing service but also for system-level applications such as hand-off management, resource allocation, and quality of service of wireless services. Most of current prediction techniques often use a set of significant locations without taking into account possible location information changes for prediction. Markov-based, LZ-based and Prediction by Pattern Matching techniques consider interesting locations to enhance the prediction accuracy, but they do not consider interesting location changes. In our paper, we propose an algorithm which integrates the changing or emerging new location information. This approach is based on Active LeZi algorithm, but both of new location and all possible location contexts will be updated in the tree with the fixed depth. Furthermore, the tree will also be updated even when there is no new location detected but the expected route is changed. We find that our algorithm is adaptive to predict next location. We evaluate our proposed system on a part of Dartmouth dataset consisting of 1026 users. An accuracy rate of more than 84% is achieved.

Spatial Statistic Data Release Based on Differential Privacy

  • Cai, Sujin;Lyu, Xin;Ban, Duohan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5244-5259
    • /
    • 2019
  • With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.

An Efficient Tag Identification Algorithm Using Improved Time Slot Method (개선된 타임 슬롯 방법을 이용한 효과적인 태그 인식 알고리즘)

  • Kim, Tae-Hee;Kim, Sun-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • In recent year, the cores of ubiquitous environment are sensor networks and RFID systems. RFID system transmits the electronic information of the tag to the reader by using RF signal. Collision happens in RFID system when there are many matched tags, and it degrades the tag identification performance. Such a system needs algorithm which is able to arbitrate tag collision. This paper suggests a hybrid method which reduces collision between the tags, and can quickly identify the tag. The proposed method operates based on certainty, which takes an advantage of tree based algorithm, and to reduce collision it selects transmission time slot by using tag ID. The simulation results show the suggested method has higher performance in the number of queries and collision compared to other tree based and hybrid algorithms.

Past Anti-Collision Algorithm in Ubiquitous ID System (Ubiquitous ID 시스템에서 고속 충돌 방지 알고리즘)

  • 차재룡;김재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.942-949
    • /
    • 2004
  • This paper proposes and analyzes the anti-collision algorithm in Ubiquitous ID system. We mathematically compares the performance of the proposed algorithm with that of binary search algorithm, slotted binary tree algorithm using time slot, and bit-by-bit binary tree algorithm proposed by Auto-ID center. We also validated analytic results using OPNET simulation. Based on the analytic results, comparing the proposed algorithm with bit-by-bit algorithm which is the best of existing algorithms, the performance of proposed algorithm is about 5% higher when the number of tags is 20, and 100% higher when the number of tags is 200.

Hand Language Translation Using Kinect

  • Pyo, Junghwan;Kang, Namhyuk;Bang, Jiwon;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.291-297
    • /
    • 2014
  • Since hand gesture recognition was realized thanks to improved image processing algorithms, sign language translation has been a critical issue for the hearing-impaired. In this paper, we extract human hand figures from a real time image stream and detect gestures in order to figure out which kind of hand language it means. We used depth-color calibrated image from the Kinect to extract human hands and made a decision tree in order to recognize the hand gesture. The decision tree contains information such as number of fingers, contours, and the hand's position inside a uniform sized image. We succeeded in recognizing 'Hangul', the Korean alphabet, with a recognizing rate of 98.16%. The average execution time per letter of the system was about 76.5msec, a reasonable speed considering hand language translation is based on almost still images. We expect that this research will help communication between the hearing-impaired and other people who don't know hand language.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

Comparative Analysis of Effective Algorithm Techniques for the Detection of Syn Flooding Attacks (Syn Flooding 탐지를 위한 효과적인 알고리즘 기법 비교 분석)

  • Jong-Min Kim;Hong-Ki Kim;Joon-Hyung Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.73-79
    • /
    • 2023
  • Cyber threats are evolving and becoming more sophisticated with the development of new technologies, and consequently the number of service failures caused by DDoS attacks are continually increasing. Recently, DDoS attacks have numerous types of service failures by applying a large amount of traffic to the domain address of a specific service or server. In this paper, after generating the data of the Syn Flooding attack, which is the representative attack type of bandwidth exhaustion attack, the data were compared and analyzed using Random Forest, Decision Tree, Multi-Layer Perceptron, and KNN algorithms for the effective detection of attacks, and the optimal algorithm was derived. Based on this result, it will be useful to use as a technique for the detection policy of Syn Flooding attacks.

Performance Improvement of Genetic Programming Based on Reinforcement Learning (강화학습에 의한 유전자 프로그래밍의 성능 개선)

  • 전효병;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 1998
  • This paper proposes a reinforcement genetic programming based on the reinforcement learning method for the performance improvement of genetic programming. Genetic programming which has tree structure program has much flexibility of problem expression because it has no limitation in the size of chromosome compared to the other evolutionary algorithms. But worse results on the point of convergence associated with mutation and crossover operations are often due to this characteristic. Therefore the sizes of population and maximum generation are typically larger than those of the other evolutionary algorithms. This paper proposes a new method that executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. The validity of the proposed method is evaluated by appling it to the artificial ant problem.

  • PDF

Heuristic Algorithms for Constructing Interference-Free and Delay-Constrained Multicast Trees for Wireless Mesh Networks

  • Yang, Wen-Lin;Kao, Chi-Chou;Tung, Cheng-Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.269-286
    • /
    • 2011
  • In this paper, we study a problem that is concerning how to construct a delay-constrained multicast tree on a wireless mesh network (WMN) such that the number of serviced clients is maximized. In order to support high-quality and concurrent interference-free transmission streams, multiple radios are implemented in each mesh node in the WMNs. Instead of only orthogonal channels used for the multicast in the previous works, both orthogonal and partially overlapping channels are considered in this study. As a result, the number of links successfully allocated channels can be expected to be much larger than that of the approaches in which only orthogonal channels are considered. The number of serviced subscribers is then increased dramatically. Hence, the goal of this study is to find interference-free and delay-constrained multicast trees that can lead to the maximal number of serviced subscribers. This problem is referred as the MRDCM problem. Two heuristics, load-based greedy algorithm and load-based MCM algorithm, are developed for constructing multicast trees. Furthermore, two load-based channel assignment procedures are provided to allocate interference-free channels to the multicast trees. A set of experiments is designed to do performance, delay and efficiency comparisons for the multicast trees generated by all the approximation algorithms proposed in this study.

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF