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Abstract 

 
With the continuous development of LBS (Location Based Service) applications, privacy 
protection has become an urgent problem to be solved. Differential privacy technology is 
based on strict mathematical theory that provides strong privacy guarantees where it 
supposes that the attacker has the worst-case background knowledge and that knowledge has 
been applied to different research directions such as data query, release, and mining. The 
difficulty of this research is how to ensure data availability while protecting privacy. Spatial 
multidimensional data are usually released by partitioning the domain into disjointed subsets, 
then generating a hierarchical index. The traditional data-dependent partition methods need 
to allocate a part of the privacy budgets for the partitioning process and split the budget 
among all the steps, which is inefficient. To address such issues, a novel two-step partition 
algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and 
synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved 
H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the 
original dataset. The algorithm can save the privacy budget allocated to the partitioning 
process and obtain a more accurate release. The algorithm has been tested on three 
real-world datasets and compares the accuracy with the state-of-the-art algorithms. The 
experimental results show that the relative errors of the range query are considerably reduced, 
especially on the large scale dataset. 
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1. Introduction 

In recent years, the continuous development of communication and LBS technology has 
brought great convenience to people's lives. The living facilities such as shopping malls and 
restaurants, etc., can be found through LBS applications. A large amount of collected 
location data can be used by these applications, and potential business value is obtained from 
mining and analyzing. The users’ privacy will inevitably be leaked if the data owner releases 
the actual data directly. Therefore, how to preserve the privacy of released data is an urgent 
problem that needs to be resolved. The existing privacy protection methods of data release 
mostly make use of anonymity and generalization techniques, such as k-anonymity [1], 
l-diversity [2], and t-closeness [3], all of which require an assumption of the background 
knowledge of the attackers. However, in the big data environment, there are so many 
channels for attackers to obtain information that it is difficult to confirm their background 
knowledge accurately. Differential privacy [4][5] is one of the strongest privacy guarantees 
that is based on a solid theoretical foundation for mathematics, and differential privacy 
assumes the worst-case of the attacker’s background knowledge, that is, the attacker 
possesses the whole database except one tuple, but it is indistinguishable on the output 
whether the tuple is in the dataset or not. The main methods of differential privacy are to add 
noise to the query or release results, but it would make the data worthless if too much noise 
was added, and privacy guarantees could not be provided if an excessively small amount of 
noise was added, so the research key point is how to balance the preservation of privacy and 
data availability.  

For some certain uses, the location service providers or government agencies do not need 
to know the exact location of the users, they need only to obtain the statistical results, i.e., 
how many people are there on a certain range at a certain time, that is, spatial statistics [6][7]. 
For example, the government departments analyze the traffic volume of a certain section of 
the road and formulate corresponding policies to regulate this traffic. Spatial data are 
multidimensional and can be released by partitioning the region and generating an index tree. 
The partitioning methods can be classified into two categories: data-dependent partition 
(such as the KD-tree [8]) and data-independent partition (such as the quad-tree). A 
data-dependent partition needs to divide the space based on the distribution of data such as 
choosing the median as the splitting point. However, the process of choosing the median will 
lead to privacy leakage. So we should allocate a part of the private budget to protect the 
process, continuing to split the budget and assigning it to each layer of the index tree. When 
the tree is high or the fan out is large, too much noise will be introduced, making the results 
inaccurate. In general, the author sets the height of the tree empirically. The other 
partitioning method is data-independent partition where the partitioning is based on the space 
range and does not refer specifically to the basic data. Data-independent is efficient and 
accurate when the data distribute uniformly, but the results are not ideal if datasets distribute 
unevenly.  

This paper presents a novel algorithm to solve the current problems. The main 
contributions are as follows: A new data-dependent partition is made on a synthetic dataset 
according to the noisy counts in the grid cells. The partition granularity is computed by 
minimizing the sum of noise error and non-uniformity error. We propose a post-processing 
method that can reduce the relative error significantly by applying consistent constraint on 
the noisy count. 
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The rest of our paper is organized as follows: Section 2 reviews the related work. 
Preliminaries are introduced in Section 3. We present our differentially private partition 
strategy and the post-processing in Section 4. We provide the security analysis in Section 5. 
The experiments and results are presented in Section 6. We give the final conclusions in 
Section 7. 

2. Related Work 
The general methods of release for statistical data always involve the partition of the dataset 
and building the index structures according to the partition results, then releasing the index 
structure. In recent years, the privacy preserving of data releasing has received considerable 
attention. Researchers have proposed some influential release methods based on differential 
privacy [9-14,16,19-23]. We briefly review the relevant work here and discuss the 
differences between our work and existing work. 

A few researchers have studied data-dependent partition with differential privacy [9-12]. 
Inan [9] proposed the Adaptive-KD tree algorithm, which can be used to partition both 
numerical and nonnumerical attributes. The mean is used to replace the traditional median as 
the splitting points when the numerical attribute is partitioned by KD-tree. However, [10] 
points out that the medians selected by this method are not accurate, especially in the skew 
data. Hence, they proposed the KD-Standard algorithm, which selects the private median 
using the exponential mechanism [15] that preserves the privacy of choosing the true median. 
They also proposed a geometric budgeting strategy that increased the privacy budget 
geometrically from root to the leaf nodes that will increase the accuracy of the released data. 
Hien To [11] built a two-level data-dependent tree, called the h-tree. As the height of the tree 
is low, the budget allocated to each level only needs to split twice. However, the fan out of 
the tree is quite large, and the budget needs to continue splitting for each leaf node. The 
DiffPart [12] algorithm proposed by Chen splits the data using the Taxonomy Tree that is 
based on generalization. This algorithm is suitable for set-valued data and supports top-k 
frequent pattern mining. However, this algorithm only supports count queries, and it does not 
consider the semantic association between different items, thus leading to the low 
availability of released data.  

Several researchers [13,16] have studied the mechanism for data-independence. Qardaji 
[13] proposed the UG and AG algorithms. The UG algorithm uses uniform grids to partition 
the dataset, and the AG algorithm employs a two-layer partitioning strategy. The first layer is 
coarse-grained, adding noise to each cell, then continuing fine-grain partitioning if the noisy 
count of grid cells exceeds the threshold. The algorithm is data-independent partitioning thus 
has high efficiency, but it can not be partitioned heuristically according to the actual 
distribution of data, and has poor results in skewed data. The PrivTree [16] partitions the 
spatial domain using the complete Quad-Tree, then publishes the noisy count and the domain 
information of nodes. This algorithm adopts hierarchical decomposition but does not depend 
on the predefined tree height. The algorithm computes a biased count for nodes with a 
decaying factor, and then uses a constant amount of noise to judge whether to continue 
partitioning a node, as well as the sparse vector technique (SVT) [17][18] that is used to 
calculate the partition threshold.  

The rest of the researchers [14,19,20] have studied hybrid partitions or other conditions. 
The DPCube [14] algorithm proposed by Xiao has two steps. First, the algorithm imposes a 
fixed grid over the original dataset, then generates a synthetic dataset based on the noisy 
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count of the cell. Second, the algorithm partitions the synthetic dataset using an innovative 
KD-Tree. Then, the resulting partitioning keys are used to split the original dataset. A new 
metric is proposed to determine whether the nodes that will minimize the non-uniformity 
error are close to uniform. Maryam [19] provided a method that focuses on counting planar 
spatial regions where the users visited most frequently. They leveraged the Euler 
characteristic with differential privacy for the first time to address the problem of duplicate 
counting when a planar body spaned multiple grid cells, and a novel constrained inference 
uses the least absolute deviations to increase the utility of the data. However, they used fixed 
grids to partition the region instead of adaptive partitioning, according to the dataset 
distributions. X. Zhang [20] proposed a three-layer adaptive grid decomposition strategy, 
called the STAG. The algorithm sampled the spatial data as the object of partitioning, and 
the data are decomposed by fixed grids. Some of the cells whose counts are over the 
threshold will continue to be split, and some of the cells whose counts are below the 
threshold will be merged. 

To summarize the existing work, data-independent partition does not rely on the 
distribution of the data. Data-independent is efficient but has relatively larger errors when 
the data are not evenly distributed. In data-dependent partitioning, the choice of tree height 
determines when to stop splitting. However, this important parameter is always selected by 
experience. To address the above decomposition problems, we built a two-level tree that can 
be regarded as a data-dependent grid partition. The grid size is determined by minimizing the 
sum of the noise error and the non-uniformity error. This method is more accurate than 
setting tree height or fan out by experience. Traditional grid-based partitioning is 
data-independent and only obtains accurate results from a uniformly distributed database. 
Nevertheless, almost all real-life datasets are distributed unevenly. Our algorithm is 
data-dependent partitioning and chooses the private median as the splitting point depending 
on the actual data distribution. It combines the advantages of both grid and tree partition 
strategy, and has satisfactory results on the real world datasets. 

3. Preliminaries 

3.1 Differential Privacy 
Definition 1 (ε -Differential privacy). Any neighboring datasets D  and D′  that have the 
same data structure and have only one record difference between them, that is, 1D D′D ≤ . 
Given a randomized algorithm A , ( )Range A  is the value range of A , if the output

( )( )O O Range A∈  of algorithm A in datasets D and D′ satisfies the inequality

( ) ( )Pr PrA D O e A D Oe ′= ≤ × =       , then A  satisfies ε - Differential privacy. 

[ ]Pr ⋅  denotes the probability of a user's privacy breach. Parameter ε  is the private 
budget that specifies the degree of privacy protection. The algorithm A  using smaller ε  
will obtain a higher degree of privacy protection. 
Definition 2 (Global sensitivity). For a query function : df D R→  and any neighboring 

datasets D  and D′ , the global sensitivity of function f  is ( ) ( )
,

max
pD D

f f D f D
′

′D = − . 

Where R  is the real number space mapped by dataset D , d  denotes the query dimension 
of function f , and p  is used to measure the norm distances of f∆ , and generally, 1p = . 
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Definition 3 (Laplace mechanism). Let : df D R→  denotes a query function over a dataset 
D. Its global sensitivity is f∆ , and a random algorithm A satisfies the ε -differential private 
if its output is ( ) ( ) ( )/A D f D Lap f ε= + D , where ( )/Lap f ε∆  is a random variable 
sampled from the Laplace distribution, the amount of noise is proportional to f∆  and 
inversely proportional to the private budget ε . The ε  is smaller, the larger noise will be 
injected and the privacy will be protected more strictly, vice versa. 

Sometimes, a preserving privacy algorithm will apply differential privacy more than once, 
or the analyses will operate on the disjoint subsets of data. On these occasions, the privacy 
guarantee depends on the sequential and parallel composition. The private budget can 
reasonably be allocated through the two theorems below, making the entire algorithm 
achieve ε - Differential privacy protection. 
Theorem 1. Sequential Composition. Let ( )1iA i n≤ ≤  be a set of random algorithms, each 

providing ( )1i i nε ≤ ≤ - differential privacy. Then, the sequence of all algorithms satisfies 

1

n

i
i
ε

=
∑ - Differential privacy. 

Theorem 2. Parallel Composition. If ( )1iD i n≤ ≤  are the disjointed subsets of the original 

dataset D  and ( )1iA i n≤ ≤  is a set of random algorithms, each provides ( )1i i nε ≤ ≤

-differential privacy for each iD . Then the sequence of these algorithms satisfies ( )iMax ε
-Differential privacy.  

3.2 Range Query 
Definition 4 (Range Query). Given a spatial range R and a spatial dataset D of the moving 
objects at time t, the range query Q on the dataset is represented as: 
( ) ( ){ },Q D x x D x range R= ∈ ∈ , where the ( )range R  denotes the moving objects in the 

spatial range R. 

3.3 Availability Metrics 
For released data, it is necessary to improve the availability of data while protecting the 
privacy of the users. At present, the metrics of data availability mainly include relative error, 
absolute error, Euclidean distance, etc. In this paper, we consider the relative error as the 
measure of availability. For a range query Q, we use ( )Q D  to denote the actual answer of 
Q on original dataset D, and ( )Q D′  indicates the answer of the same query on the released 
dataset D′ , and the formalized definition of relative error is as follows: 
 

( ) ( )
max( ( ), )
Q D Q D

Error
Q D s
′ −

=                         (1) 

 
where s is a threshold that avoids the denominator becoming zero. 
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4. DPIH Partition 
In the traditional data-dependent partitioning, the private budget should be divided into two 
parts. One part is used to protect the partitioning process, such as median selection, and the 
other part is used to add noise to the resulting count. The budget allocated to protect the 
partitioning can be represented as: / 2mε ε= , we called the median budget. Then, the total 
median budget needs to be divided by the tree height h, thus, the median budget for each 
level of the tree is: = / 2m h hε ε . As expounded on Definition 3, the private budget is 
smaller, the added noise will be larger. When the tree height is high, a large amount of noise 
will be added. Obviously, the added noise will affect the accuracy of choosing the median 
and cause the released data to be worthless.  

The H-tree [11] is a two-level tree that uses data-dependent partition. Since the height of 
the tree is low, the budget allocated to each level only need to split twice. However, the total 
budget should be cut into two parts: one part is to protect the node counts, called the count 
budget cε , and the other part is to protect the splitting process, called the median budget 

mε . Then, the count budget should still split into two parts for two levels of the tree, i.e. 

1 2
c c cε ε ε= + , and the median budget needs to continue splitting 22log m  times for choosing 

the median (m is the partitioning granularity), that is, ( )2 1 2logm m mmε ε ε= + . Although the 
number of H-tree budget splits is less than KD-tree, it will still affect the accuracy of the 
partition results and the availability of published data when m is quite large. We improved 
the H-Tree and propose the DPIH-tree partition algorithm, injecting a constant amount of 
noise into the original dataset and generating a synthetic dataset according to the noisy count. 
Since the partition does not perform on the original data, there is no need to allocate an 
additional private budget to protect the partitioning process Hence, more budget can be used 
for node counts. The [10] points out that the query accuracy will be significantly improved if 
more budget is allocated for node count than for medians. The experiments show that our 
algorithm performs particularly better than the state-of-the-art methods on million-level 
datasets. 

We provide an overview of our partitioning strategy: First, DPIH decomposes the entire 
space domain with fixed grids, injects noise into each grid cell and synthesizes a dataset 
according to the noisy count. Second, DPIH partitions the synthetic dataset using the IH-tree 
(Improved H-Tree), then partitions the original dataset using the splitting points that are 
obtained from the former step. 

The details of the DPIH (Differential Privacy Improved H-Tree) partitioning algorithm 
are as follows: 1) Partition the original dataset using fixed uniform grids, and the grid size is 
β ; 2) Add Laplace noise to each grid cell using private budget αε  and synthesize a new 
dataset based on the noisy count of each cell; 3) Partition the synthetic dataset with 
Algorithm 2 (IH-Tree partitioning algorithm); 4) Partition the original dataset using the 
splitting keys that returned from step 3; 5) Add noise using the rest of the private budget 
( )1 α ε− , releasing the noisy count of each cell. 

In Algorithm 2 (IH-Tree partition algorithm), it is necessary to determine which 
dimension will be splitted first. We calculated the variance of the spatial points in each 
dimension respectively and selected the larger one to split first, because the larger variance 
means the data points distribute in a more dispersed manner in this dimension, and it will 
have better resolution to partition in this dimension. Then, choose the medians to partition 
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the spatial domain in the first dimension until m data blocks are obtained. Further split each 
block into m sub-blocks in the second dimension in the same way. There is a naive method 
to select m-1 sequential medians to generate m partitions on each dimension, but obviously, 
it is inefficient if m is quite large. In our algorithm, a recursive manner is used to partition 
the dataset, that is, the synthetic dataset cD  is partitioned into 

1cD  and 
2cD  with the 

median, then the subsets 
1cD  and 

2cD  are recursively partitioned until return m blocks. 
However, the value of m is not always the power of 2, hence, we iterative split the domain 
into 2log2 m    blocks, calculate the variance of these blocks in the first dimension, sort them 
in descending order and choose the first 2log2 mm   −  blocks to continue partitioning. 
Therefore, we partition the domain into m blocks in the first dimension, then we split each 
block in the second dimension similarly. Finally, we obtain m m×  cells.  
 
Algorithm 1. DPIH partitioning algorithm: 
Input: Size of grids β , Private budget ε , dataset D 
Output: Release the domain information and noisy count of each leaf node 

1. Partition the original dataset into β  uniform grid cells; 
2. Add Laplace noise with budget αε  for each cell, synthesize a new dataset cD  
based on the noisy count; 
3. Partition cD  by Algorithm 2 ( IH-Tree Partitioning Algorithm); 
4. Partition the original dataset D according to the splitting keys which obtained from 
the step 3; 
5. Add noise to each cell using the rest budget (1 )α ε−  and release the domain 
information and noisy count of each leaf node. 

 
Algorithm 2. IH-Tree partitioning algorithm: 
Input: dataset cD , granularity size m 
Output: partition keys 

1. Calculate the variance of the spatial points for each dimensions in the original 
dataset D , and select the larger one to divide first; 
2.Obtain m data blocks by dividing the first dimension; 
(Partition the dataset into 

1cD  and 
2cD  by the median of the first dimension, then 

partition 
1cD  and 

2cD  iteratively until m blocks are obtained) 
3.      For  each m blocks: 

Get m sub-blocks in the second dimension using the method of step 2; 
4. Return the partition keys. 

4.1 Synthetic Dataset Construction 
In Algorithm 1, we slice the original dataset into β  grid cells, add noise into each cell 

using the private budget αε , and synthesize a new dataset based on the noisy count. We 
refer to the method of synthesizing a dataset proposed in [9]: If the noisy count is s more 
than the actual count, add s data points randomly in that cell; if the noisy count is s less than 
the true count, delete s data points randomly; if the noisy count is negative, modify the noisy 
count to 0. Algorithm2 (IH-Tree partition) is performed on this synthetic dataset. Since the 
division is not in the original dataset, it can save the median budget that needs to be allocated 
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to protect the partitioning process in traditional methods. 

4.2 Granularity 
The first step of the Algorithm 1 needs to partition the original dataset into β  grid cells 

and add Laplace noise based on the αε  budget for each cell. If β  is excessively large, too 
much noise will be introduced, affecting the availability of the released data; If β  is 
undersize, the perturbation error will be reduced, but the non-uniformity errors will increase, 
as well as, exposing the distribution of the actual data, and the privacy guarantee cannot be 
enforced. Unfortunately, [24] proves that the optimal partitioning in multi-dimensional 
histograms is NP-hard, that is, the optimal size of grids does not exist. In our experiments, 
we set β  to a fixed value of 100, i.e. 10*10 grid cells cover the domain. 

In Algorithm 2, synthetic dataset cD  is partitioned into m m×  blocks. We prefer to 
compute the minimum query estimation error proposed in [13] to determine the size of the 
partitioning granularity. In the experimental part, we will give a more reasonable proposal 
based on the experimental results. 

The query estimation error has two sources: perturbation error and non-uniform error. 
Perturbation Error (PE) is the error caused by adding Laplace noise into each cell, therefore, 
the perturbation error is the difference between noisy count and actual count. The 
non-Uniformity Error (NE) is generated only when the query rectangle partially intersects 
the cells. We assume that the data points in these cells are uniformly distributed, and this 
estimation will produce non-uniformity error. 
 

( ) ( ) ( )Error Q PE Q NE Q= +                       (2) 
 

Theorem 3. To minimize the query estimation error while the released dataset satisfies ε −
differential privacy, the partitioning granularity of DPIH tree is m N cε= , where N  is 
the number of points of the synthetic dataset cD , ε  is the private budget of the algorithm, 
and c is a constant. 
Proof: In the process of releasing two-dimensional spatial statistics, the global sensitivity of 
the counting query is 1, and the private budget of noise is ε . In the other words, the added 
noise is a random sample that follows the Laplace distribution (1 / )Lap ε  and has a 
deviation of 22 ε . Assuming that r is the ratio of the query rectangle to the domain area, 
then, there are approximately 2rm  cells that are included in the query. Thus, the 

perturbation error in the query rectangle is ( )2 22 2rm m rε ε× = . The non-uniformity 

error is only related to the cells partially intersecting the query rectangle, and the 
non-uniformity error is proportional to the number of data points falling on the cells that are 
at the edge of the query rectangle. Since the ratio of the query area to the domain is r, the 
lengths of query rectangle are proportional to r  of the spatial domain length. Thus, the 
edge of the query contains m r  cells, that is, approximately 

( ) ( )2m r N m r N m× = ×  data points fall on the edge of the query. Assuming that the 
non-uniformity error, on average, is proportional to the total density of data points in the 
query border, then the non-uniformity error is 0N r c m  for some constant 0c . To 
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minimize the sum of these two errors, namely, ( ) ( )( )0min 2N r c m m r ε+ , we should 

set m N cε= , where 02c c= .                                           □ 

EXAMPLE 4.2. Given m=5, we choose the longitude as the first partitioning dimension, 
and the medians are selected as the splitting points. Then, the domain is split into five blocks, 
i.e., 1 5C C− . The smaller interval means the data points in this region are denser. 
Furthermore, we split each 1 5C C−  into five partitions on the latitude using the same 
method as above. Finally, we obtain 25 cells. The partition effect of the above example is 
shown in Fig. 1. The red rectangle indicates a query range. 

Fig. 2 demonstrates the index structure of this DPIH-tree. The root of the tree represents 
the whole domain, and includes five partitions that correspond to 1 5C C− . The second level 
of the tree is the further partitioning of each 1 5C C− . The height of the tree is 2, and the fan 
out of the tree is 5. The red parts represent the nodes that intersect the query box. 

 
Fig. 1. Division effect diagram 

 

 
Fig. 2. Index diagram 

4.3 Post Processing 
In this section, we present a post processing to improve the accuracy of the range query 
using constrained inference. The general methods to obtain the query count are: if the node is 
completely contained in the query rectangle, return its noisy count; if the node intersects the 
query range, we assume that the data points in the node are distributed uniformly, and the 
count of the intersection is node counts multiplied by the ratio of the intersection part to the 
query rectangle. [13] proposes a post-processing method based on the least squares 
estimate(OLS), but the algorithm is relatively complex. We apply a constrained inference 
with similar effects based on its idea. As shown in Fig. 1, the count of the node 1C  can be 
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its own count 
1CY , or the sum of its five children 

11 12 13 14 15C C C C CY Y Y Y Y+ + + + . However, if 
the count is set to 5/6 of its own count plus 1/6 of its five children’s count, i.e. 

1 11 12 13 14 15
5 / 6 1 / 6( )C C C C C CY Y Y Y Y Y+ + + + + , the perturbation error will be minimized 

1
( ) (5 / 6) ( )CPE Q Var Y= . In Algorithm 3, we show the details of post processing: 

Algorithm 3  Post Processing 
Input: m nodes in the 1-dimension 
1. If the node is not a child: 
2. childchild node

sum Y
∈

=∑  

3. ( )( ) ( ( )) 1nodeadjust Y sum len children node= − +  
4. node nodeY Y adjust= −  
5. for child node∈  
6.  child childY Y adjust= +  

5. Security Analysis 
The algorithm is composed of two parts, according to the Theorem 1, i.e. sequential 
composition. The private budget of the combination algorithm ε  is the sum of the budget 
of its sub-algorithms, iε . In addition, the study in [25] proves that the constrained inference 
will not affect the guarantee of the privacy, hence the budget of the algorithm we proposed is 

1 2ε ε ε= + . 
Theorem 4. The DPIH partitioning algorithm satisfies ε -Differential privacy. 
Proof: In Algorithm 1, we first partition the original dataset D into β  grids. These grid 
cells are disjointed. Then, we add Laplace noise with private budget αε  for each cell. 
According to the Theorem 2, i.e. parallel composition, the step 2 of the Algorithm 1 satisfies 
αε -Differential privacy. The process of partitioning the synthetic datasets cD  (Algorithm 1, 
step 3) does not consume any private budget. Afterwards, we perform partition on the 
original dataset D using the resulting splitting keys, and inject noise into each cell using the 
rest budget ( )1 α ε− . Thus, the step 5 of the Algorithm 1 satisfies ( )1 α ε− -Differential 
privacy. According to the Theorem 1, the DPIH partitioning algorithm satisfies ε
-Differential privacy.                                                     □ 

6. Experiments 
To analyze the accuracy of the query range more comprehensively, experiments are 
conducted in three real-life spatial datasets: Reservoir, Road1 and Checkin2, they have 
different distribution characteristics and different volumes, the distribution of the three 
datasets is shown in Fig. 3 below. The Reservoir dataset has approximately twenty thousand 
spatial locations that are obtained by searching the keyword "reservoir" on the open platform 
of the Gaode Map, thus, the distribution of the Reservoir is shaped like a map of China. The 

1 http://www.census.gov/geo/maps-data/data/tiger-geodatabases.html 
2 http://snap.stanford.edu/data/loc-gowalla.html 
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Road dataset is hundreds of thousands-level, including the coordinates of road intersections 
in the New Mexico and Washington areas. The distribution of this dataset is quite special. 
Most data points are in the two relatively concentrated regions, and the remaining area is 
almost blank. Checkin is derived from a location-based social network where users share 
their locations. There are approximately 6.4 million tuples in this dataset, which is so huge 
that experimentation on a personal computer is infeasible. Hence, our experimental results 
are tested on the cloud.  
 

 
Fig. 3. Distribution of datasets 

 
We set five different query sizes for each dataset, Q1 is the smallest. Each Qi+1 increases 

approximately twice in both X and Y directions. Q5 is the largest query rectangle and it 
covers approximately 1/4 of the domain. The information about the datasets and the query 
sizes are all shown in Table 1. There are 500 queries randomly generated for each query 
rectangle under each different budget. The average of these relative errors is taken as the 
result under this query in answering them. 

 
Table 1. Datasets information and query sizes 

Dataset Points Domain 
range Q1 Q2 Q3 Q4 Q5 

Reservoir 0.02M 59*31 2*2 5*5 10*10 15*8 30*15 

Road 0.36M 25*20 1*1 2*2 3*3 6*5 12*10 

Checkin 6.44M 360*150 10*5 20*10 45*20 90*40 180*75 

The step 1 of the Algorithm 1 splits the domain with β  grid cells. We set β  as 100, 
that is, 10*10 grid cells over the total domain. The step 2 adds noise with the private budget 
αε  and step 5 adds noise with the rest budget (1 )α ε− . In most of the experiments, we set 

0.5α = , but in the Road dataset, we found that if we set 0.3α = , the results will be better. 
We use line graphs to illustrate the relative error under all query sizes and provide a 
comparison among different algorithms. The blue line indicates our algorithm, the orange 
line is UG and the gray line is AG which are all proposed in [13]. The yellow line is DPCube 
proposed in [14], the green line is STAG proposed in [20]. 

6.2 Experimental Results 
We compare the performance of our proposed DPIH with UG, AG, DPCube and STAG in 
each three datasets. In differential privacy, ε  represents the degree of privacy protection, 
smaller value of ε  indicates higher degree of privacy protection. The relative error defined 
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in Section 3.3 is a metric of data availability, it can evaluate the quality of each partition by 
the accuracy of its answers to range queries, the relative error is smaller indicates the data 
availability is higher. In our experiments, we set three different ε  values, =0.1ε , =0.5ε  
and =1ε , we compare the relative errors of our algorithm with the other four algorithms 
which have some influence on this research field, and the experimental results are shown as 
follows: 
 

 
Fig. 4. Compare relative errors of UG, AG, DPCube, STAG and DPIH on the Reservoir dataset 

 
Fig. 4 shows that the relative error of the DPIH algorithm in the query size of Q3 and Q5 

is much better than other algorithms under the Reservoir dataset, it performs worse than the 
AG algorithm in the small query such as Q1, but still better than UG and DPCube and STAG 
algorithms. We found that when the budget 1ε = , if we adjust the value of m to 

2m N cε= , and when 0.1ε = , we adjust m to ( )2m N cε= , the relative error will 

be significantly reduced. The reason why our algorithm performs considerably better under 
Q3 and less than ideally under Q1 is that the cells generated by our algorithm areas not as 
uniform as the standard grid cells, the areas where data points are densely distributed will be 
partitioned more times. Nevertheless, the grids are assumed to be uniform when we calculate 
the value of m. Thus, if the query size is excessively small, more errors would be generated, 
suggesting that the value of m can be tuned adaptively if the dataset is biased.  

 

 
Fig. 5. Compare relative errors of UG, AG, DPCube, STAG and DPIH on the Road dataset 

 
The Road dataset is quite special and biased. There are only two densely distributed 

regions, while the remaining regions are blank. In the algorithm proposed in our paper, we 
add or delete some spatial points randomly according to the noisy count of the cell when 
synthesizing a new dataset. It will generate certain errors when large blank areas appear. We 
can see that the DPIH performs worse on the Road dataset than on the other two datasets 
under different ε  values and query sizes. STAG performs poor in the Reservoir and the Road 
datasets because it draws the samples from the datasets in advance with a 1/10 probability, thus it 
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will generate large sparse area after sampling, and it will produce a lot of errors when partition 
and add noise on the sparse area. From the observation of Fig. 5, under the query range of Q1 
and Q5, the relative error of DPIH is slightly higher than the AG algorithm, but still lower 
than UG and DPCube. However, when the side length of the query rectangle is 
approximately 1/6~1/4 of the domain, DPIH performs much better than the other algorithms 
because the Road dataset has large blank areas, more errors will be caused by the process of 
synthesizing a new dataset in the Road dataset than in the other datasets. Fortunately, if we 
set 0.3α = , in the other words, reduce the budgets allocated to step 2 of algorithm 1 and 
add more noise to the count, the relative error distinctly decreases. 

 

 
Fig. 6. Compare relative errors of UG, AG, DPCube, STAG and DPIH on the Checkin dataset 

 
Checkin is a million-level dataset and its distribution is not overly clustered or skewed. 

From the observation of Fig. 6, DPIH performs well in this dataset. The cardinality of the 
dataset is huge, and the range for the partitioning granularity m is between 253 and 800, 
according to DPIH, the partitioning process doesn’t consume the private budget, even if 
some errors arise from the process of synthesizing the dataset, it can be corrected in the 
subsequent post processing, thus the advantages of DPIH can be well demonstrated in 
Checkin. STAG also provides good results in the Checkin dataset, unlike the general 
partition algorithms, it constructs a three-layer grid partitioning, and it merges the cells into 
coarse-grained cells if the count of these cells is below the threshold. The relative errors of 
STAG are lower than DPIH under Q1, Q2, Q4 when 0.1ε = , but it performs worse than DPIH in 
almost other cases. 

In summary, the data-dependent partitioning algorithm proposed in this paper is applicable 
to unbiased datasets and performs much better in larger volume datasets. For some skewed 
datasets such as Road, we can reduce the value of α , namely, allocating more budget to the 
node count and allocating less budget to synthesize the dataset, better results will be returned. 
Nevertheless, the data-dependent partition is less efficient than the data-independent partition 
and needs to be tested on a server or cloud if the dataset is million-level. 

7. Conclusions 
In this paper, we propose a novel multidimensional data-dependent partitioning algorithm 
based on differential privacy. It is necessary to allocate additional privacy budget for 
choosing the median in the traditional data-dependent partition. In our algorithm, we first 
synthesize a new dataset according to the noisy count, then partition the domain on the 
synthetic dataset. It can save the private budget allocated to protect the partitioning process, 
and obtain a more accurate release. In the experimental tests on three real-life datasets, our 
algorithm gets satisfactory results, especially on the million-level datasets, the relative errors 
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of DPIH are almost smaller than current methods that means DPIH provides more accurate 
results under the three different degrees of privacy protection. However, our algorithm is 
data-dependent, so it is difficult to conduct experiments on a personal computer if the dataset 
is million-level. We plan to extend the idea of partitioning to sequential or dynamic spatial 
data, and study more efficient and accurate data-dependent partitioning algorithms in the 
future. 
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