• Title/Summary/Keyword: Tree-Based Network

Search Result 634, Processing Time 0.027 seconds

A Bitarray-Based Reverse Routing Method in Wireless Sensor Networks (무선 센서 네트워크에서 역방향 통신을 위한 비트열기반 경로설정 방법)

  • Kim, Seon-Hwan;Lee, Myung-Sub;Kim, Chong-Gun;Park, Chang-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.80-89
    • /
    • 2010
  • Most of the discussed power efficient routing algorithms, such as LEACH, PEDAP and etc., assume that a base station has infinite resources and there is no traffic limit. However, these assumptions cannot be applied to typical wireless sensor network environments, especially a small sensor network using a normal node as the base station. Moreover, many studies on the wireless sensor networks have not been considering the reverse transmission scheme which transmits data from a sink node to the normal nodes. We propose a bitarray-based reverse routing method which is a power efficient routing algorithm for the wireless sensor networks. The proposed method can be easily implemented by using the tree-based routing scheme and can be worked well with the small memory size for the address of sensor nodes. The experimental result shows that the amount of message transmission of the proposed bitarray-based reverse routing method can be reduced about 61.3% or more compared to the previous methods.

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

A Study on Development of Interactive Smart Network(IoT)-based Subway Platform Disaster Response System (사물인터넷 기반 지하철 역사공간 재난대응 시스템 개발에 관한 연구)

  • Park, Mi-yun;Koo, Won-yong;Park, Wan-soon;Park, Eunchurn;Moon, Byung-Gyu;Kwon, Se-gon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we conducted a study on the development of Internet of Things-based disaster response system. We researched the method of building the network-based disaster prevention system using a client machine that the sensor network and the keeper. Also, we developed the algorithm for optimal evacuation shelter based on spanning tree algorithm. The system is tested actually in Seoul Gaepo station, and we verified the usability of the system.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Query Processing of Uncertainty Position Using Road Networks for Moving Object Databases (이동체 데이타베이스에서 도로 네트워크를 이용한 불확실 위치데이타의 질의처리)

  • Ahn Sung-Woo;An Kyung-Hwan;Bae Tae-Wook;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.283-298
    • /
    • 2006
  • The TPR-tree is the time-parameterized indexing scheme that supports the querying of the current and projected future positions of such moving objects by representing the locations of the objects with their coordinates and velocity vectors. If this index is, however, used in environments that directions and velocities of moving objects, such as vehicles, are very often changed, it increases the communication cost between the server and moving objects because moving objects report their position to the server frequently when the direction and the velocity exceed a threshold value. To preserve the communication cost regularly, there can be used a manner that moving objects report their position to the server periodically. However, the periodical position report also has a problem that lineal time functions of the TPR-tree do not guarantee the accuracy of the object's positions if moving objects change their direction and velocity between position reports. To solve this problem, we propose the query processing scheme and the data structure using road networks for predicting uncertainty positions of moving objects, which is reported to the server periodically. To reduce an uncertainty of the query region, the proposed scheme restricts moving directions of the object to directions of road network's segments. To remove an uncertainty of changing the velocity of objects, it puts a maximum speed of road network segments. Experimental results show that the proposed scheme improves the accuracy for predicting positions of moving objects than other schemes based on the TPR-tree.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

An Energy-Efficient Protocol For Detecting Injurious Insect in Wireless Bio Sensor Networks (무선 바이오센서 네트워크에서 에너지 효율을 고려한 해충 감지 시스템을 구축하기 위한 프로토콜)

  • Yoo, Dae Hyun;Lee, Joo Sang;An, Beongku;Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we proposed a system protocol for detecting injurious insect to support energy saving transmission in wireless bio sensor networks. The main ideas and features of the system are as follows. First, the route establishment method which is based on the energy efficiency and stability by using time-division tree structure. Second, multi-hop direction-based data gatering structure. In this structure, the selected fading method is used to transmit packet via the established tree structure for supporting power saving and route lifetime efficiently. Finally, we can get the node power saving and reduce transmission delay, thus network lifetime and efficiency are improved. The performance evaluation of the proposed protocol is via OPNET(Optimized Network Engineering Tool).

  • PDF

A Minimum Interference Channel Assignment Algorithm for Performance Improvement of Large-Scale Wireless Mesh Networks (대규모 무선 메쉬 네트워크의 성능 향상을 위한 최소 간섭 채널 할당 알고리즘)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.964-972
    • /
    • 2009
  • Wireless mesh network (WMN) is emerging a future core technology to resolve many problems derived from exist wireless networks by employing multi-interface and multi-channel. Ability to utilize multiple channels in WMNs substantially increases the effective bandwidth available to wireless network nodes. However, minimum interference channel assignment algorithms are required to use the effective bandwidth in multi-channel environments. This paper proposes a cluster-based minimum interference channel assignment (MI-CA) algorithm to improve the performance of WMN. The MI-CA algorithm is consists of Inter-Cluster and Intra-Cluster Intrchannel assignment between clusters and in the internal clusters, respectively. The Inter-Cluster channel assignment assigns a barebone channel to cluster heads and border nodes based on minimum spanning tree (MST) and the Intra-Cluster channel assignment minimizes channel interference by reassigning ortasgonal channels between cluster mespann. Our simheation results show that MI-CA can improve the performance of WMNs by minimizing channel interference.

Transmission Power Control Technique considering Shortest-Path in Wireless Sensor Networks (무선 센서네트워크에서 최단경로를 고려한 송신전력제어기법)

  • Kim, Seon-Hwan;Park, Chang-Hyeon;Lee, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.677-685
    • /
    • 2009
  • There are a number of studies that propose transmission power control algorithms in wireless sensor networks. However, these algorithms have a lot of overhead in the initialization phase since a number of packets have to be transmitted to determine the optimal transmission power level. This paper proposes the transmission power control technique considering the shortest-path to minimize the hop-count without the occurrence of any power control messages. We applied the proposed technique on tree-based network component implemented on TinyOS. And we evaluated the performance including transmission energy and average network depth with 21 motes. Compared to before, the proposed technique reduces about 24.7% of the average electric current on transmitting. As a result of considering the shortest-path, the hop-count considering the shortest-path was about 41% less than a normal network.

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.