• Title/Summary/Keyword: Tree simulation

Search Result 608, Processing Time 0.027 seconds

Simulation-Based Risk Analysis of Integrated Power System (시뮬레이션을 이용한 통합전력시스템의 위험도 분석)

  • Lee, Ji Young;Han, Young Jin;Yun, Won Young;Bin, Jae Goo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.151-164
    • /
    • 2016
  • In this paper, we deal with a risk analysis for an IPS (Integrated power system) and propose a simulation model combining the fault tree and event tree in order to estimate the system availability and risk level, together. Firstly, the basic information such as operational scenarios, physical structure, safety systems is explained in order to make the fault tree and event tree of the IPS. Next, we propose a discrete-event simulation model using a next-event time advance technique to advance the simulation time. Also the state transition and activity diagrams are explained to represent the relationship between the objects. By numerical examples, the redundancy allocation is considered in order to decrease the risk level of the IPS.

A Simulation of BCT(Backbone Core Tree) Generation Algorithm for Multicasting (멀티캐스팅을 위한 BCT생성 알고리즘의 시뮬레이션)

  • 서현곤;김기형
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.67-71
    • /
    • 2002
  • 본 논문에서는 many-to-many IP 멀티캐스팅을 위한 효율적인 BCT(Backbone Core Tree)생성 알고리즘의 시뮬레이션 방법에 대하여 제안한다. BCT는 기법은 CBT(Core Based Tree)에 기반을 두고 있다. CBT는 공유 트리를 이용하여 멀티캐스트 자료를 전달하기 때문에 Source based Tree에 비하여 각 라우터가 유지해야 하는 상태 정보의 양에 적고, 적용하기 간단하지만, Core 라우터 선택의 어려움과 트래픽이 Core로 집중되는 문제점을 가지고 있다. 이에 대한 보완책으로 BCT기법이 제안되었는데, 본 논문에서는 주어진 네트워크 위상 그래프에서 최소신장 트리를 만들고, 센트로이드(Centroid)를 이용하여 효율적인 BCT를 생성하는 알고리즘을 제안하고 시뮬레이션 방법을 제시한다.

  • PDF

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Behavior Tree-based Scenario Development Technology to Induce Various Experiences of VR content

  • Seo, Jinseok;Yang, Ungyeon
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.263-268
    • /
    • 2020
  • This paper introduces an event modeling and simulation system using behavior trees. The system aims to overcome the limitations of existing fixed, simple scenario-based training content, and to extend the behavior of objects to enable various experience deployments. To achieve this goal, we made specific tasks of behavior trees can change according to users' reaction and developed an adaptive simulation module that can analyze and execute behavior trees that changes at runtime. In order to validate our approach, we applied the adaptive behavior tree simulation to the scenarios in our virtual reality simulation-based fire training system we have been developing and demonstrated the implementation results.

Tree-inspired Chair Modeling (나무 성장 시뮬레이션을 이용한 의자 모델링 기법)

  • Zhang, Qimeng;Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.29-38
    • /
    • 2017
  • We propose a method for tree-inspired chair modeling that can generate a tree-branch pattern in the skeleton of an arbitrary chair shape. Unlike existing methods that merge multiple-input models, the proposed method requires only one mesh as input, namely the contour mesh of the user's desired part, to model the chair with a branch pattern generated by tree-growth simulation. We propose a new method for the efficient extraction of the contour-mesh region in the tree-branch pattern. First, we extract the contour mesh based on the face area of the input mesh. We then use the front and back mesh information to generate a skeleton mesh that reconstructs the connection information. In addition, to obtain the tree-branch pattern matching the shape of the input model, we propose a three-way tree-growth simulation method that considers the tangent vector of the shape surface. The proposed method reveals a new type of furniture modeling by using an existing furniture model and simple parameter values to model tree branches shaped appropriately for the input model skeleton. Our experiments demonstrate the performance and effectiveness of the proposed method.

Electrical Tree Simulation by Fractal Theory (Fractal 이론을 이용한 전기 트리 시뮬레이션)

  • Shin, T.S.;Shin, D.W.;Kang, S.H.;Lee, B.Y.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1481-1484
    • /
    • 1997
  • This paper describes a electrical tree simulation by fractal theory. Tree patterns produced by computer simulation with random numbers were studied from the point of view of fractal dimension. Tree patterns have a variety of shapes such as branch-like, bush-like, and quasi-bush-like trees. The patterns are determined by origins and probability ratio. The fractal dimensions have been measured a function of discharge number.

  • PDF

The Analysis and Design of Tree-LDPC codes with EXIT charts (EXIT charts를 이용한 Tree-LDPC 코드의 분석 및 설계)

  • Lee, Sung-Jun;Heo, Jun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1049-1050
    • /
    • 2006
  • In this paper, we present the analysis of Tree-LDPC codes using EXIT(Extrinsic information transfer) charts methods. Two different EXIT charts schemes are compared. One is based on the closed form equation and the other is based on Monte-Carlo simulation. The thresholds by these two schemes match well with the threshold by DE(density evolution) scheme. Simulation performance is also shown with the obtained thresholds.

  • PDF

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany (독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발)

  • Jae-gyun Byun;Martina Ross-Nickoll;Richard Ottermanns
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

Wind Fragility for Urban Street Tree in Korea (강풍 발생 시 국내 가로수의 취약성 분석)

  • Sim, Viriyavudh;Jung, WooYoung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.298-304
    • /
    • 2019
  • In this paper, the analytical method to derive wind fragility for urban street tree in Korea was shown. Monte Carlo Simulation method was used to determine the probability of failure for urban street tree. This probability result was used to determine wind fragility parameters for four types of tree based on the study of street tree species in urban area in Daegu, Korea. Wind fragility for street tree was presented in terms of median capacity and standard deviation of the natural logarithm of the capacity. Results showed that the dominant factor affecting the probability of failure of tree under wind load was their diameter. Moreover, amongst the four types of tree chosen, the tree with height 7m and diameter 35cm had the lowest probability of failure under wind loading, whereas the tree with height 8m and diameter 30cm could resist the least wind loading. The median failure wind speed for urban street tree with height 7m were 43.8m/s and 50.6m/s for diameter 30cm and 35cm, respectively. Also, for tree with height 8m, their median failure wind speeds were 38.7m/s and 45.4m/s for tree with diameter 30cm and 35cm, respectively.

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.