
Journal of Multimedia Information System VOL. 7, NO. 4, December 2020 (pp. 263-268): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.4.263

263

I. INTRODUCTION

 As the virtual reality market grows, the quantitative

demand for content increases rapidly and the demand for

scalability is also faced. In order to cope with this demand,

the productivity of content has become very important.

However, there is a limit to improving content productivity

with a development method that relies on computer

programming languages such as C++ or C#.

 Content productivity problems are more prominent in

virtual reality simulation-based training systems. The main

purpose of the training system is to maximize the

educational goals by providing users with a variety of

experiences. In order to ensure that all users with different

training proficiency and abilities have the opportunities to

explore a variety of virtual activities, virtual training

scenarios that can handle numerous cases are required.

 We have been developing a fire training system using

virtual reality simulation and trying to solve the problems

mentioned above in this system for several years. We are

using behavior trees to design the behaviors of the virtual

objects that make up our system. Behavior tree is very

useful in designing the behavior models of the objects

required by our planner. However, as we said earlier, more

and more complex behavior trees are needed to handle

countless experience situation.

Therefore, in order to tackle the problem, we started this

research. In our research, we made some changes to

behavior tree to meet our requirements. We defined four

types of new behavior tree nodes, which can be

dynamically changed according to the training situation at

runtime and implemented an adaptive behavior tree

simulation module in which these special tasks can operate.

And in order to confirm whether the adaptive simulation we

devised is effective, we applied it to the virtual reality

simulation-based training system we were developing.

This paper is organized as follows. In Section 2, we

describe of some case studies related with our research.

Section 3 explains some of the problems we resolved in the

process of implementing our adaptive simulation module.

Section 4 introduces the four types of special behavior tree

nodes and modeling methods of them. Section 5

Behavior Tree-based Scenario Development Technology to Induce

Various Experiences of VR content

Jinseok Seo1*, Ungyeon Yang2

Abstract

This paper introduces an event modeling and simulation system using behavior trees. The system aims to overcome the limitations of

existing fixed, simple scenario-based training content, and to extend the behavior of objects to enable various experience deployments. To

achieve this goal, we made specific tasks of behavior trees can change according to users’ reaction and developed an adaptive simulation

module that can analyze and execute behavior trees that changes at runtime. In order to validate our approach, we applied the adaptive

behavior tree simulation to the scenarios in our virtual reality simulation-based fire training system we have been developing and

demonstrated the implementation results.

Key Words: Virtual reality, Experience diversification, Behavior tree, Adaptive simulation.

Manuscript received December 04, 2020; Revised December 21, 2020; Accepted December 28, 2020. (ID No. JMIS-20M-12-035)

Corresponding Author (*): Jinseok Seo, 176 Eomgwangno, Busanjin-gu, Busan 47340, Korea, +82-51-890-2712, jsseo@deu.ac.kr.
1Game Engineering Major, Dong-eui University, Busan, Korea, jsseo@deu.ac.kr
2Creative Content Research Division, Electronics and Telecommunications Research Institute, Daejon, Korea, uyyang@etri.re.kr

Behavior Tree-based Scenario Development Technology to Induce Various Experiences of VR content

264

demonstrates an example scenario that apply our approach.

Finally, we will make concluding remarks in Section 6.

II. RELATED WORKS

 In order to increase the productivity of contents, the

virtual reality and game industries have included various

standardized authoring support tools in their production

pipeline. Typical examples are Unity Engine's Mecanim

and Unreal Engine's Blueprint. Although there are tools that

require some knowledge of computer programming now, it

is expected to become a tool that even beginner can easily

access in a near future.

Unity's Mecanim uses a tool like the Hierarchical State

Machine (HSM) to create the effect of transitioning

animation according to changes in the state of an object [1].

In addition to this, Unity recently added a visual scripting

tool called Bolt [2] as a standard asset. Using Bolt, it is

possible to implement not only animation but also the entire

game logic using only visual scripting.

Unreal's Blueprint [3] is a visual scripting language that

greatly expands data flow diagram (DFD) and is a tool that

helps you program the behavior of objects. Unreal also

includes Behavior Tree as a visual tool for AI of game

agents [4]. The study in [5] also showed the possibility of

an agent capable of reinforcement learning using

Environment Query System (EQS) [6] and visual tools

provided by Unreal.

As in this research, the problem of adaptively simulating

objects in virtual environments is similar to planning

problems in artificial intelligence. This is because

adaptively simulating requires finding or replacing actions

to accomplish a particular purpose. SHOP2(Simple

Hierarchical Ordered Planner 2) [7] is a representative

example and a system based on Hierarchical Task Network

(HTN). As an example of planning [8] is a procedural

scenario creation technique using HTN in lifesaving

training games can generate variety of dynamic scenarios

in unpredictable environments.

Because behavior trees are very natural to apply

computational operations to nodes that make up themselves,

they are well suited as a means for adaptive simulation. In

[9], they introduce the parameterization to behavior tree and

an authoring tool for AI agents. An example of applying

operations to behavior tree’s nodes can be found in [10]. In

this research, the genetic algorithm is used to optimize the

nodes of behavior tree.

III. ADAPTIVE BEHAVIOR TREE

SIMULATION MODULE

Each time we update the fire training system we have

been developing, there are more and more object behaviors

that we need to implement newly. In addition, it was found

that the behavior tree needs to be continuously updated

whenever training is performed for users. To update a

behavior tree, you need to implement a custom action task

to invoke some action method on an object and add the

resulting task to the behavior tree. For this reason, we

implemented an adaptive behavior tree simulation module

that can dynamically change the action method we want

without modifying behavior trees or implementing new

custom tasks.

The simulation module we implemented acts as a

component of a game object in the Unity engine [12]. We

utilized Opsive's Behavior Designer [11] for the basic

simulation and authoring of behavior tree, which is very

suitable for our research. Each adaptive task implemented

in this research inherits from the base classes provided by

Opsive’s Behavior Designer.

The core of this simulation module is a generic action

task called “Method Invoker” that allows us to use the

desired Unity GameObject's action method as a parameter

instead of implementing a new custom action task. When

you put a Method Invoker task in a behavior tree, you need

to set the Unity GameObject and the component that owns

the method that this task will execute, the method name to

execute, and the parameters required for the method. All of

these processes are done in the Inspector window of Unity,

and for this, we implemented “Method Finder Drawer” by

customizing the Object Drawer provided by Obsive.

A Method Invoker task also works as a scene-level

component of a Unity GameObject, but we have

implemented serialization functionality so that it can be

saved as an asset that is a project-level component. This

serialized task can be referenced by a specific node in

behavior trees, or it can replace a specific node at runtime.

By implementing this way, we enabled adaptive simulation

in which some nodes of behavior trees can change at

runtime.

In addition to Method Invoker, we had to implement a

few additional custom tasks for adaptive behavior tree

simulation. They include Set Variable, ChangeableAction,

D-Sequence, D-Selection, etc. Details of each task are

postponed to the next chapter.

IV. MODELING ADAPTIVE BEHAVIOR

TREE

In this chapter, we will explain the process of modeling

object behavior using four types of behavior tree nodes we

defined in this research, which are created using the Method

Invoker task mentioned above. These four tasks allow

specific nodes in behavior trees to dynamically change in

their own different ways.

Journal of Multimedia Information System VOL. 7, NO. 4, December 2020 (pp. 263-268): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.4.263

265

4.1. Parameterized Task

 When you put a Method Invoker task in a behavior

tree, you are prompted for the method name you want to

execute and parameters the method needs. The

parameters set in this task are created as shared variable

objects of the corresponding game object. Therefore, this

parameter value can be accessed from other nodes or

other behavior trees at runtime.

Fig. 1. Set Variable task that can change the argument value of

Parameterized task at runtime.

For the external reference of the parameters in the

Method Invoker task, we implemented a custom

behavior tree node called "Set Variable" (Fig.1). The Set

Variable task changes the value of a shared variable of

the GameObject with a behavior tree component that

want to change the value of a parameter, and the changed

value is passed back to the Method Invoker task of that

behavior tree component.

4.2. Substitute Task

 Substitute task can be replaced at runtime with another

node that includes its subtree. Fortunately, the Opsive's

Behavior Designer provides an External Behavior Tree

functionality that can store a behavior tree node

including its subtree as an external asset.

By actively utilizing this External Behavior Tree, we

implemented three types of substitute tasks. They are

ChangeableAction task and two composite tasks, which

are D-Sequence (changeable sequence) (Fig. 2) and D-

Selector (changeable selector).

The Substitute tasks are replaced with predetermined

external behavior trees when the conditions set in the

ChangeableCondition Field of them are satisfied. In

Changeable Condition, the value of a shared variable

(described above) can be used as a condition and

complex conditions can be set by combining multiple

conditions.

Fig. 2. D-Sequence task, one of the Substitute tasks, can set

various conditions.

4.3. Stochastic Task

 There are three types of custom tasks for stochastic

execution in our behavior tree. The first one is Random

Selector. Random Selector task is a composite node and

is used to select one of the multiple scenarios by

randomly selecting and executing one of the child tasks.

The second one, Random Probability task, is one of the

Condition tasks and returns Success with random

probability. This task is used to select whether to run the

scenario of its child node. The third, Set Shared Float

Random task, is an Action task that modifies a float type

variable value to a random value. Of course, in this task,

you have to set the maximum and minimum values.

4.4. Mutated Task

Fig. 3. Increase Variable task that increases the temperature by 2

degrees every second.

There are two types of mutated tasks; Increase

Variable and Decrease Variable. Increase Variable (Fig.

3) task makes the value of a specific variable increase at

regular intervals at running time. In the inspector

window for this task, you must set an incremental step

Behavior Tree-based Scenario Development Technology to Induce Various Experiences of VR content

266

and a maximum value. The Decrease Variable task does

exactly the opposite.

V. SIMULATION RESULTS

We tested for evaluation by modeling 55 adaptive task

nodes in 10 virtual objects, which includes an electric fan,

an induction range, a refrigerator, etc. By adding 55

adaptive tasks in this way, it was possible to create

training scenarios for an infinite number of cases

mathematically, although the difference is not large. Fig.

4 and 5 show how the behavior tree of an induction range

in the kitchen has been changed.

Fig. 4. Induction Range’s initial behavior tree. The changes in the

dotted box section can be seen in Fig. 5.

Fig. 5. Behavior tree that has changed at runtime. The subtree in

the dashed box in Fig. 5 has been changed to the subtree in this

figure.

VI. CONCLUSION

In this paper, we introduced an adaptive training

simulation module that can alleviate the productivity

problem in virtual reality contents. We have added four new

task types to behavior tree, which is most commonly used

for modeling AI for objects in virtual reality systems. These

newly added tasks implemented to change dynamically

according to the user's skill level or reaction. As a result of

applying such an adaptive simulation to the virtual reality

simulation-based fire training system we were developing,

it was possible to operate various training scenarios without

designing new behavior trees or changing some part of

them.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. NRF-2019R1F1A1041854)

and Electronics and Telecommunications Research

Institute (ETRI) grant funded by ICT R&D program of

MSIT/IITP[2019-0-01347, Developing of Realistic Fire

Training Content Technology to Help Simulate Fire

Sites and Improve Command Capabilities]. If you intend

to utilize the contents of this report, you must disclose

that the research was funded by Electronics and

Telecommunications Research Institute (ETRI).

REFERENCES

[1] Unity Technologies, “Animation System Overview,”

Nov. 2020; https://docs.unity3d.com/Manual/

AnimationOverview.html

[2] Unity Technologies, “Unity engine visual scripting,”

Nov. 2020; http://unity.com/products/unity-visual-

scripting

[3] Epic Games, “Introduction to Blueprints,” Nov. 2020;

https://docs.unrealengine.com/en-US/Engine/

Blueprints/GettingStarted/index.html

[4] Epic Games, “Behavior Trees,” Nov. 2020;

https://docs.unrealengine.com/en-US/Engine/

ArtificialIntelligence/BehaviorTrees/index.html

[5] R. Boyd, “Implementing Reinforcement Learning in

Unreal Engine 4 with Blueprint,” Diss. University

Honors College, Middle Tennessee State University,

2017.

[6] Epic Games, “Environment Query System,” Nov.

2020; https://docs.unrealengine.com/en-US/Engine/

ArtificialIntelligence/EQS/index.html

[7] D. Nau, T.-C. Au, et al., “SHOP2: An HTN planning

system,” Journal of artificial intelligence research, vol.

20, pp. 379-404, 2003

[8] A. Liapiss, G. N. Yannakakis, and J. Togelius,

“Adapting models of visual aesthetics for personalized

content creation,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 4, no.

3, pp. 213-228, 2012.

[9] A. Shoulson et al., “Parameterizing behavior trees,” in

Journal of Multimedia Information System VOL. 7, NO. 4, December 2020 (pp. 263-268): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2020.7.4.263

267

Proc. of International conference on motion in games,

Springer, Berlin, Heidelberg, 2011.

[10] C-U. Lim, R. Baumgarten, and S. Colton. “Evolving

behaviour trees for the commercial game DEFCON,” in

Proc. of European conference on the applications of

evolutionary computation, Springer, Berlin, Heidelberg,

2010.

[11] OPSIVE, 2020; https://opsive.com/solutions/ai-

solution/.

[12] Unity, 2020; https://unity.com.

Authors

Jinseok Seo received his BS degree from

Konkuk University, Korea, in 1998 and an

MS and a PhD degree in the Department of

Computer Science and Engineering from

Pohang University of Science and

Technology (POSTECH), Korea, in 2000

and 2005, respectively. In 2005, he joined

the Department of Game Engineering at

Dong-eui University, Korea where he is

currently a professor.

 His research interests include virtual reality, augmented reality,

and game AI algorithms.

Ungyeon Yang received his BS degree in

computer science and engineering from

Chungnam National University, Daejeon,

Rep. of Korea, in 1997. He received his

MS and PhD degrees from Pohang

University of Science and Technology

(POSTECH), Rep. of Korea, in 2000 and

2003, respectively. Since 2003, he has

been a principal researcher with

Electronics and Telecommunications

Research Institute (ETRI).

His research interests include wearable display, information

visualization, 3D user interfaces, human factors, haptics and

multimodal user interaction in the field of virtual/mixed reality

and ergonomics.

https://opsive.com/solutions/ai-
https://opsive.com/solutions/ai-

Behavior Tree-based Scenario Development Technology to Induce Various Experiences of VR content

268

