The Journal of Korean Association of Computer Education
/
v.6
no.1
/
pp.1-8
/
2003
We introduce a efficient vertical mining algorithm that reduces searching complexity for frequent k-itemsets significantly. This method includes sorting items by their LSI(Least Support Itemsets) similarity and then searching frequent itemsets in tree-based manner. The search tree structure provides several useful heuristics and therefore, reduces search space significantly at early stages. Experimental results on various data sets shows that the proposed algorithm improves searching performance compared to other algorithms, especially for a database having long pattern.
In recent years, the money Laundering crimes are increasing by means of foreign exchange transactions. Our study proposes four scoring models to provide early warning of the laundering in foreign exchange transactions for both inward and outward remittances: logistic regression model, decision tree, neural network, and ensemble model which combines the three models. In terms of accuracy of test data, decision tree model is selected for the inward remittance and an ensemble model for the outward remittance. From our study results, the accumulated number of transaction turns out to be the most important predictor variable. The proposed scoring models deal with the transaction level and is expected to help the bank teller to detect the laundering related transactions in the early stage.
Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.
The main objective of the statistical analysis about industrial accidents is to find out what is the dangerous factor in its own industrial field so that it is possible to prevent or decrease the number of the possible accidents by educating those who work in the fields for safety tools. However, so far, there is no technique of quantitative evaluation on danger. Almost all previous researches as to industrial accidents have only relied on the frequency analysis such as the analysis of the constituent ratio on accidents. As an application of data mining technique, this paper presents analysis on the efficiency of the CHAID algorithm to classify types of industrial accidents data and thereby identifies potential weak points in accident risk grouping.
컴퓨터의 활용이 다양해 지면서 예전과 다르게 다양한 이유로 많은 사람들이 여행을 하고 나서 여행에 대한 정보 블로그나 웹 상에 저장하고 공개한다. 이렇게 웹 상에 많은 양의 여행 관련 데이터가 존재함에도 불구하고 데이터들이 산발적으로 존재하고 체계적으로 데이터 베이스화 되어 있지 않아서 여전히 정보를 검색하고 여행 일정을 세우는 데에 많은 시간과 노력이 필요하다. 따라서 본 논문은 FP-tree 기반의 빈발 패턴 증가 기법을 이용한 여행 계획 수립 기법을 제안한다. 제안되는 기법에서 데이터들은 FP-tree 방식으로 저장되어 검색에 필요한 시간과 노력을 극적으로 줄이고, FP-growth 마이닝 기법을 이용해 효과적인 여행 경로를 선택할 수 있게 도와준다.
최근 컴퓨터와 인터넷의 발달로 과거 창구거래를 이용하던 방법에서 HTS(Home Trading System)을 이용하여 거래하게 됨으로써 개인투자자들도 쉽게 주식투자를 할 수 있게 되었다. 그러나 개인들이 방대한 양의 과거 데이터를 분석하기에는 상당한 어려움이 있다. 본 논문에서는 주식 데이터베이스로부터 과거 특정 종목들 간 연관성을 추출하여 투자자들로 하여금 주식 선별에 참고가 될 수 있는 방안에 관하여 논의한다. 기존의 논문에서 제안된 과거 패턴을 이용하여 미래의 주가변화를 예측하는 것과 달리, 종목들 간에 연관성을 통하여 하나의 테마가 형성 되었을 때 주도주의 변화로 관련주의 변화를 파악하여 투자에 유익한 정보를 제공하는데 목적이 있다.
최근 컴퓨터와 통신의 기술이 빠르게 발달함에 따라 사회 각 부분은 그동안 경험하지 못했던 정보화라는 새로운 변화를 겪었다. 그 결과 정보화 수준이 점점 고도화 될수록 더욱 다양하고 방대한 데이터가 생성되어 데이터베이스를 이루게 되었다. 방대한 데이터에서 유용한 정보를 얻는 데이터마이닝 기법이 중요한 문제로 대두되었다. 데이터마이닝 기법은 점점 더 많은 분야에서 합리적인 선택을 위해 필수적으로 사용된다. 본 논문은 마이닝 기법을 적용하여 방대한 데이터베이스가 최적의 여행 경로 선택을 제공한다. 본 논문은 빈발 패턴 증가 기법에 가중치를 두어 여행자가 여행지를 선별하기 좋은 환경을 제공한다. 미래 산업 중 가장 중요한 산업 중 하나인 관광 산업은 계속적으로 성장하고 있으며 논문에서 제시하는 데이터 마이닝 기법으로 더 큰 발전을 기대한다.
데이터마이닝 패키지에 구현된 분류나무 알고리즘 가운데 CART, CHAID, QUEST, C4.5에서 변수 선택법을 비교하였다. CART의 전체탐색법이 편의를 갖는다는 사실은 잘알려졌으며, 여기서는 상품화된 패키지들에서 이들 알고리즘의 편의와 선택력을 모의실험 연구를 통하여 비교하였다. 상용 패키지로는 CART, Enterprise Miner, AnswerTree, Clementine을 사용하였다. 본 논문의 제한된 모의실험 연구 결과에 의하면 C4.5와 CART는 모두 변수선택에서 심각한 편의를 갖고 있으며, CHAID와 QUEST는 비교적 안정된 결과를 보여주고 있었다.
Proceedings of the Korean Statistical Society Conference
/
2003.05a
/
pp.171-176
/
2003
방대한 양의 데이터에서 의사결정에 필요한 정보를 발견하는 일련의 과정을 데이터 마이닝 (data mining)이라고 하는데, 본 연구에서는 생물정보학 (bioinofmatics)의 한분야로서 의학분야의 통계적 의사결정 시스템을 제공하는 의사결정나무 (decision tree) 알고리즘 중 QUEST를 S-PLUS로 구현하고(이하 S-QUEST) 발육제한(Intrauterine Growth Restriction; IUGR) 데이터를 분석하였다.
최근 MarketPlace의 시장의 한 영역으로 형성되고 있는 전자상거래 사이버 쇼핑몰의 규모와 확산도를 알아보고, 이 중 종합쇼핑몰 3곳, 전문쇼핑몰 1곳의 사이트 현황을 살펴본다. 또한 교차판매를 위한 상품간 연관성분석과 소비자간 구성과 거래동향 등을 분석하기 위하여 Data Mining을 이용한다. 좀 더 세분화된 고객분석을 위한 개선점을 제기하고, 이를 통하여 전반적인 전자상거래 쇼핑몰에 대한 인식을 제고한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.