• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.027 seconds

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

Using Missing Values in the Model Tree to Change Performance for Predict Cholesterol Levels (모델트리의 결측치 처리 방법에 따른 콜레스테롤수치 예측의 성능 변화)

  • Jung, Yong Gyu;Won, Jae Kang;Sihn, Sung Chul
    • Journal of Service Research and Studies
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2012
  • Data mining is an interest area in all field around us not in any specific areas, which could be used applications in a number of areas heavily. In other words, it is used in the decision-making process, data and correlation analysis in hidden relations, for finding the actionable information and prediction. But some of the data sets contains many missing values in the variables and do not exist a large number of records in the data set. In this paper, missing values are handled in accordance with the model tree algorithm. Cholesterol value is applied for predicting. For the performance analysis, experiments are approached for each treatment. Through this, efficient alternative is presented to apply the missing data.

  • PDF

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Prediction Model for the Risk of Scapular Winging in Young Women Based on the Decision Tree

  • Gwak, Gyeong-tae;Ahn, Sun-hee;Kim, Jun-hee;Weon, Young-soo;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.140-148
    • /
    • 2020
  • Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.

Iceberg Query Evaluation Technical Using a Cuboid Prefix Tree (큐보이드 전위트리를 이용한 빙산질의 처리)

  • Han, Sang-Gil;Yang, Woo-Sock;Lee, Won-Suk
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.226-234
    • /
    • 2009
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Due to the characteristics of a data stream, it is impossible to save all the data elements of a data stream. Therefore it is necessary to define a new synopsis structure to store the summary information of a data stream. For this purpose, this paper proposes a cuboid prefix tree that can be effectively employed in evaluating an iceberg query over data streams. A cuboid prefix tree only stores those itemsets that consist of grouping attributes used in GROUP BY query. In addition, a cuboid prefix tree can compute multiple iceberg queries simultaneously by sharing their common sub-expressions. A cuboid prefix tree evaluates an iceberg query over an infinitely generated data stream while efficiently reducing memory usage and processing time, which is verified by a series of experiments.

An In-depth Survey Analysis Applying Data Mining Techniques (데이터마이닝을 이용한 설문조사의 심층 분석)

  • Kim, Wan-Seop;Lee, Soo-Won
    • Journal of Engineering Education Research
    • /
    • v.9 no.4
    • /
    • pp.71-82
    • /
    • 2006
  • To accomplish the educational objectives of a department, a system for CQI(Continuous Quality Improvement) is necessary. Improving the educational system by survey analysis is one of the most important factors for accomplishing the educational objectives. In general, survey analysis is carried out by using statistical distribution on an attribute or correlation analysis between two attributes. However, these analysis schemes have a limitation that they cannot find relations among various attributes. In this paper, an in-depth survey analysis method applying data mining techniques is presented. Data mining is a technique for extracting interesting knowledges from a large set of data. Survey from undergraduate students in the School of Computing of Soongsil University is analyzed in this paper by using a data mining tool, called Clementine. Results of Clementine analysis show the relationship between 'grade', and other attributes hierarchically, and provide useful information that can be applied in student consulting and program improvement.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Sequence Mining based Manufacturing Process using Decision Model in Cognitive Factory (스마트 공장에서 의사결정 모델을 이용한 순차 마이닝 기반 제조공정)

  • Kim, Joo-Chang;Jung, Hoill;Yoo, Hyun;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • In this paper, we propose a sequence mining based manufacturing process using a decision model in cognitive factory. The proposed model is a method to increase the production efficiency by applying the sequence mining decision model in a small scale production process. The data appearing in the production process is composed of the input variables. And the output variable is composed the production rate and the defect rate per hour. We use the GSP algorithm and the REPTree algorithm to generate rules and models using the variables with high significance level through t-test. As a result, the defect rate are improved by 0.38% and the average hourly production rate was increased by 1.89. This has a meaning results for improving the production efficiency through data mining analysis in the small scale production of the cognitive factory.

A Method for Business Process Analysis by using Decision Tree (의사결정나무를 활용한 비즈니스 프로세스 분석)

  • Hur, Won-Chang;Bae, Hye-Rim;Kim, Seung;Jeong, Ki-Seong
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.3
    • /
    • pp.51-66
    • /
    • 2008
  • The Business Process Management System(BPMS) has received more attentions as companies increasingly realize the importance of business processes. However, traditional BPMS has focused mainly on correct modeling and exact automation of process flow, and paid little attention to the achievement of final goals of improving process efficiency and innovating processes. BPMS usually generates enormous amounts of log data during and after execution of processes, where numerous meaningful rules and patterns are hidden. In the present study we employ the data mining technique to find out useful knowledge from the complicated process log data. A data model and a system framework for process mining are provided to help understand the existing BPMS. Experiments with the simulated data demonstrate the effectiveness of the model and the framework.

  • PDF

A Study on the Data Fusion Method using Decision Rule for Data Enrichment (의사결정 규칙을 이용한 데이터 통합에 관한 연구)

  • Kim S.Y.;Chung S.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.291-303
    • /
    • 2006
  • Data mining is the work to extract information from existing data file. So, the one of best important thing in data mining process is the quality of data to be used. In this thesis, we propose the data fusion technique using decision rule for data enrichment that one phase to improve data quality in KDD process. Simulations were performed to compare the proposed data fusion technique with the existing techniques. As a result, our data fusion technique using decision rule is characterized with low MSE or misclassification rate in fusion variables.