• Title/Summary/Keyword: Treatment dose verification

Search Result 117, Processing Time 0.022 seconds

Geant 4 Monte Carlo simulation for I-125 brachytherapy

  • Jie Liu;M.E. Medhat;A.M.M. Elsayed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2516-2523
    • /
    • 2024
  • This study aims to validate the dosimetric characteristics of Low Dose Rate (LDR) I-125 source Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report (TG-43), the dosimetric parameters of a new brachytherapy source should be verified either experimentally or theoretically before clinical procedures. The simulation studies are very important since this procedure delivers a high dose of radiation to the tumor with only a minimal dose affecting the surrounding tissues. GEANT4 Monte Carlo simulation toolkit associated brachytherapy example was modified, adapted and several updated techniques have been developed to facilitate and smooth radiotherapy techniques. The great concordance of the current study results with the consensus data and with the results of other MC based studies is promising. It implies that Geant4-based Monte Carlo simulation has the potential to be used as a reliable and standard simulation code in the field of brachytherapy for verification and treatment planning purposes.

Feasibility of Improving the Accuracy of Dose Calculation Using Hybrid Computed Tomography Images: A Phantom Study

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Purpose: Kilovoltage computed tomography (kV-CT) is essential for radiation treatment planning. However, kV-CT images are significantly distorted by artifacts when a metallic prosthesis is present in the patient's body. Thus, the accuracies of target delineation and treatment dose calculation are inevitably lowered. We evaluated the accuracy of the calculated doses using an image restoration method with hybrid CT, which was introduced in our previous study. Methods: A cylindrical phantom containing four metals, namely, silver, copper, tin, and tungsten, was scanned using kV-CT and megavoltage CT to produce hybrid CT images. We created six verification plans for three head and neck patients on kV-CT and hybrid CT images of the phantom and calculated their doses. The actual doses were measured with film patches during beam delivery using tomotherapy. We used the gamma evaluation method to compare dose distribution between kV-CT and hybrid CT with three gamma criteria, namely, 3%/3 mm, 2%/2 mm, and 1%/1 mm. Results: The gamma pass rates decreased as the gamma criteria were strengthened, and the pass rate of hybrid CT was higher than that of kV-CT in all cases. When the 1%/1 mm criterion was used, the difference in gamma pass rates between them was up to 13%p. Conclusions: According to our findings, we expect that the use of hybrid CT can be a suitable approach to avoid the effect of severe metal artifacts on the accuracy of dose calculation and contouring.

Evaluation of VMAT Dose Accuracy According to Couch Rotation in Stereotactic Radiation Surgery of Metastatic Brain Cancer (전 이성 뇌 암의 정위 방사선수술에서 Couch 회전에 따른 VMAT의 선량 정확성 평가)

  • Na, Gwui Geum;Park, Byoung Suk;Cha, Woo Jung;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.117-125
    • /
    • 2021
  • Purpose: To purpose of this study is to find the correlation of the Set-up error according to the couch rotation and suggest additional margin setting for the GTV. Target and Method: Each scenario treatment plan was created by making the frequency of non-coplanar beams different among all beams. The set-up error value was measured by using the Exact System and the dose accuracy was evaluated by creating a re-treatment plan. Results: When the couch was rotated by 30°, 45°, 60°, and 90°, the mean of the X-axis values was measured to be 0.29 mm, 0.26 mm, 0.51 mm, and 0.08 mm, respectively. The mean of the Y-axis values was measured to be 0.75 mm, 0.5mm, 0.35 mm, and 0.29 mm, respectively. The mean of the Z-axis values was measured to be 0.5 mm, 0.28 mm, 0.22 mm, and 0.1 mm, respectively. There were dose reductions of 0.1%, 3.1%, 1.9% in D99 for 1-NC VMAT, 2-NC VMAT, and 3-NC VMAT, respectively. Conclusion: When treating with 50% or more of non-coplanar beams among total beams, image verification is required. And it is considered to make the treatment plan by adding a 1.5 mm margin to the GTV.

Verification of Extended Source-To-Imager Distance (SID) Correction for Portal Dosimetry

  • Son, Jaeman;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • This study aimed to evaluate and verify a process for correcting the extended source-to-imager distance (SID) in portal dosimetry (PD). In this study, eight treatment plans (four volumetric modulated arc therapy and four intensity-modulated radiation therapy plans) at different treatment sites and beam energies were selected for measurement. A Varian PD system with portal dose image prediction (PDIP) was used for the measurement and verification. To verify the integrity of the plan, independent measurements were performed with the MapCHECK device. The predicted and measured fluence were evaluated using the gamma passing rate. The output ratio was defined as the ratio of the absolute dose of the reference SID (100 cm) to that of each SID (120 cm or 140 cm). The measured fluence for each SID was absolutely and relatively compared. The average SID output ratios were 0.687 and 0.518 for 120 SID and 140 SID, respectively; the ratio showed less than 1% agreement with the calculation obtained by using the inverse square law. The resolution of the acquired EPIDs were 0.336, 0.280, and 0.240 for 100, 120, and 140 SID, respectively. The gamma passing rates with PD and MapCHECK exceeded 98% for all treatment plans and SIDs. When autoalignment was performed in PD, the X-offset showed no change, and the Y-offset decreased with increasing SID. The PD-generated PDIP can be used for extended SID without additional correction.

Multi-slit prompt-gamma camera for locating of distal dose falloff in proton therapy

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Kim, Chan Hyeong;Lee, Han Rim;Jeong, Jong Hwi;Lee, Se Byeong;Shin, Dong Ho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1406-1416
    • /
    • 2019
  • In this research, a multi-slit prompt-gamma camera was developed to locate the distal dose falloff of the proton beam spots in spot scanning proton therapy. To see the performance of the developed camera, therapeutic proton beams were delivered to a solid plate phantom and then the prompt gammas from the phantom were measured using the camera. Our results show that the camera locates the 90% distal dose falloff (= d90%), within about 2-3 mm of error for the spots which are composed $3.8{\times}10^8$ protons or more. The measured location of d90% is not very sensitive to the irradiation depth of the proton beam (i.e., the depth of proton beam from the phantom surface toward which the camera is located). Considering the number of protons per spot for the most distal spots in typical treatment cases (i.e., 2 Gy dose divided in 2 fields), the camera can locate d90% only for a fraction of the spots depending on the treatment cases. However, the information of those spots is still valuable in that, in the multi-slit prompt-gamma camera, the distal dose falloff of the spots is located solely based on prompt gamma measurement, i.e., not referring to Monte Carlo simulation.

Spinal Cord Partial Block Technique Using Dynamic MLC (동적 다엽콜리메이터를 이용한 척수의 부분 차폐 기법)

  • 조삼주;이병용;이상욱;안승도;김종훈;권수일;최은경
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck or the thorax region. It is not an easy task to maintain the spinal cord dose below tolerance and to keep the clinically acceptable dose to the PTV in this region. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. This technique is an extension of the conventional treatment planning. In the beginning the beam directions are selected as same as the conventional treatment planning to encompass the PTV, then the partial block are designed to shield the spinal cord. The plan comparisons between the conventional therapy plan and the PTB plan were performed to evaluate the validity of this technique. The mean dose and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan generated better results than the conventional treatment plan and it was proved to be useful for the H&N region.

  • PDF

In Vivo Dosimetry with MOSFET Detector during Radiotherapy (방사선 치료 중 MOSFET 검출기를 이용한 체표면 선량측정법)

  • Kim Won-Taek;Ki Yong-Gan;Kwon Soo-Il;Lim Sang-Wook;Huh Hyun-Do;Lee Suk;Kwon Byung-Hyun;Kim Dong-Won;Cho Sam-Ju
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • In Vivo dosimetry is a method to evaluate the radiotherapy; it is used to find the dosimetric and mechanical errors of radiotherapy unit. In this study, on-line In Vivo dosimetry was enabled by measuring the skin dose with MOSFET detectors attached to patient's skin during treatment. MOSFET dosimeters were found to be reproducible and independent on beam directions. MOSFET detectors were positioned on patient's skin underneath of the dose build-up material which was used to minimize dosimetric error. Delivered dose calculated by the plan verification function embedded in the radiotherapy treatment planning system (RTPs), was compared with measured data point by point. The dependency of MOSFET detector used in this study for energy and dose rate agrees with the specification provided by manufacturer within 2% error. Comparing the measured and the calculated point doses of each patient, discrepancy was within 5%. It was enabled to verify the IMRT by using MOSFET detector. However, skin dosimetry using conventional ion chamber and diode detector is limited to the simple radiotherapy.

  • PDF

Spinal Cord Partial Block Technique Using Dynamic MLC

  • Cho, Sam-Ju;Yi, Byong-Yong;Back, Geum-Mun;Lee, Sang wook;Ahn, Seung-Do;Kim, Jong-Hoon;Kwon, Soo-Il;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.138-140
    • /
    • 2002
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck (H&N) or the thorax region. Due to the fact that the cord is the elongated shaped structure, it is not an easy task to maintain the cord dose within the clinically acceptable dose range. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. Three dimension (3D) conformal beam directions, which minimize the coverage of the normal organs such as the lung and the parotid gland, were chosen. The PBT field shape for each field was designed to shield the spinal cord with the dMLC. The transmission factors were determined by the forward calculation method. The plan comparisons between the conventional 3D conformal therapy plan and the PTB plan were performed to evaluate the validity of this technique. The conformity index (CI) and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan always generated better results than the conventional 3D conformal plan. The PBT was proved to be useful for the H&N and thorax region.

  • PDF

'THE METHOD OF TBI FOR ACCURATE REPRODUCTION OF RADIATION FIELD AND PATIENT POSITION' (방사선 전신 조사 치료시 정확한 환자자세 및 조사야 재현을 위한 방법)

  • KWEON YOUNG-HO;LEE BYOUNG-GOO;WHANG WOONG-KU;KIM YOU-HYUN
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.156-166
    • /
    • 1995
  • Total body irradiation (TBI) requires large radiation field and extended source to axis distance (SAD), therefore in needs large size treatment room and it needs compensators which components. Appropriate thickness beam spoiler should be used to raise skin dose. Treatment machine, photon energy, total dose, dose rate, dose fractionation, patient position, shield of normal tissues and organs were known to important parameters for TBI. TBI disturbes regular daily treatment schedule and significantly overloads Radiation on oncology departments and during the treatment session it requires accurate reproduction of radiation field and patient position. We were enable to TBI in small size treatment room and short SAD with parallel opposing lateral fields technique and achieved homogenious whole body dose distribution using pb compensators and controled lung dose by lung shield blocks. Drawing a patient shadow on the wall, we could shortened set up time and possible to accurate reproduction of radiation field and patient position.

  • PDF

A study of Quality evaluation for medical linear accelerator using Electronic Portal Imaging (전자포탈영상 (EPI)을 이용한 의료용 선형가속기의 성능평가에 관한 연구)

  • 윤성익;권수일;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • Accurate radiation dosimetric characters is very important to determine of dose to a radiotherapeutic patient. Medical linear accelerators have been developed not only its new quality of convenient operation but also electric moderation. It is reliable to measure more detail physical parameter that linac's internal ability. Typically, radiation dosimetric tool is classified ionization chamber, film, thermoluminescence dosimeter, etc. Nowaday, Electronic Portal Imaging Device is smeared in radiation field to verification of treatment region. EPID's image was focused that using both on-line image verification and absolutely minimum absorbed dose during radiotherapy. So, Electronic Portal Imaging was tested for quality evaluation of medical linear accelerator had its pure conditional flash. This study has performed symmetry, Light/Radiation field congruence, and energy check, geometry difference on wedge filter using a liquid filled ion chamber (EPID). Prior to irradiated on EPID, high energy photon beam is checked with ion chamber. Using these results more convenient dosimetric method is accomplished by EPID that taken digital image. Medical image is acquired with EPID too. Therefore, EPID can be analyzed by numerical information for what want to see or get more knowledge for natural human condition.

  • PDF