• 제목/요약/키워드: Tread Rubber

검색결과 52건 처리시간 0.02초

CBR의 제조(製造) 및 이를 자동차(自動車) Tyre에 활용(活用)하는데 관(關)한 연구(硏究)(제4보(第四報)) Diene Rubber와 Alfin Rubber와의 Blend에 관(關)하여 (Studies on It's Practical Application to Auto Pneumatic Tyre and Manufacture of CBR (Cis-1,4-Polybutadiene Rubber) (Part. 4) On the Blend of Diene rubber and Alfin rubber)

  • 이현오;이영길;김기엽
    • Elastomers and Composites
    • /
    • 제8권1호
    • /
    • pp.33-51
    • /
    • 1973
  • We have studied the blending effects of Diene NF 35 R and Alfin 1530 at various blending ratios, 100/0, 70/30, 50/50, 30/70, 0/100, and of carbon black HAF-HS and ISAF-HS at various compounding ratios of 45 PHR, 55 PHR, 65 PHR, for tyre tread rubber. As the results, it was found that; 1. For tyre tread rubber, as the blending ratio, AR 1530/Diene NF 35R, indicated 70/30, the physical properties we examined were most excellent. 2. Excellent result was obtained in the case of carbon black compounding ratio of 55 PHR. The compounding of ISAF-HS made better result than that of HAF-HS for tensile strength, but the compounding of HAF-HS made better result than that of ISAF-HS for tearing strength and best result for abrasion quantity. 3. Heat buildup obtained from compounding carbon black HAF-HS indicated low temperature than that from compounding carbon black HAP-HS. As the compounding amount of carbon black increased, and as the blending amount of AR 1530 decreased, the heat buildup increased. 4. Carbon black was more efficient to AR 1630 than io Diene NF 35 R. 5. In the physical properties, mooney viscosity and mooney scorch time, as the compounding amount of carbon black increased, the values of mooney viscosity increased, but that of mooney scorch time had a max. point at the compoundiug amount of carbon black, 55 PHR.

  • PDF

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술 (Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber)

  • 이범재;임기원;지상철;정권영;김태중
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.232-243
    • /
    • 2009
  • 근래 고성능 친환경 타이어의 개발요구에 의하여 경제성(낮은 회전 저항)과 안전성(wet traction) 및 내마모성면에서 균형있는 특성을 가지는 타이어 트레드 고무의 합성 제조 기술이 중요하게 대두된다. 이를 위하여 다양한 기능성 용액중합 SBR의 개발과 함께 고무/충전제 간의 상호작용 증진 기술이 학술적으로나 산업적으로 활용되고 있다. 본 고에서는 기존의 카본블랙 고무와 함께 최근 green tire로서 각광 받는 실리카 충전 고무에서 충전제와 상호반응이 가능한 화학적 변성 SBR과 커플링제를 이용한 고성능 타이어 트레드 고무의 합성 제조 기술에 대하여 최근 연구 방향과 함께 작용 메카니즘에 대하여 고찰하였다.

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

Properties of Silica-SBR Compounds Using Cellulose Dispersant Applicable to Tire Tread Rubber

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.176-183
    • /
    • 2020
  • Silica-styrene butadiene rubber (Silica-SBR) compounds have been used in the preparation of tire treads. The silica dispersibility of silica-SBR compounds is related to the processability, mechanical properties, and wear resistance of tires. Recently, in order to improve the silica dispersibility of the silica-SBR compounds, the wet masterbatch (WMB) process was introduced, which is a method of mixing rubber in the water phase. We aimed to improve the silica dispersibility of the silica-SBR compounds by preparing a silica dispersant applicable to the WMB process. For this purpose, cellulose, 2-hydroxyethyl cellulose, and cellulose acetate were employed as a silica dispersant. The silica dispersibility of the compounds was measured by a moving die rheometer. Improvement in the processability of silica-SBR compounds was evaluated by the Mooney viscometer. The wear resistance of silica-SBR compounds using a cellulose dispersant was improved by up to 29%.

대기 부유분진중의 고무성분 및 납과 아연의 입도별 거동 (Behaviors of Rubber Particles, Lead and Zinc in Atmospheric Particulate Classified by Particle Size Range)

  • 이용근;원정호;김경섭;황규자
    • 한국대기환경학회지
    • /
    • 제2권2호
    • /
    • pp.60-65
    • /
    • 1986
  • Atmospheric particulates were collected at a site near the front gate of the Yonsei University using nine stages Andersen air sampler and the distribution of seasonal particle size was investigated. Rubber, Pb and Zn contents of the collected particulates in each stage were determined. Particle size distribution of atmospheric particulate, which was made by concentration distribution curve method, was usually divided into two groups, course (particles larger than 1 - 2 $\mu m in diameter$) and fine (particles smaller than 1 - 2 \mu m in diameter$) groups, regardless of sampling period. More than 80 percent of the total rubber contents in atmospheric particulates were larger than $5 \mu m$ in diameter, meaning that most of rubber particles were originated from tire tread. After benzene extraction for 4 hrs, the extracts were analyzed by Curie-point pyrolysis gas chromatography for rubber content. Pb and Zn contents were determined by atomic absorption spectroscopy. The annual average concentration of rubber particles was $4.2 \mu g/m^3$, which corresponded to 2.2% of the annual average total suspended particulates. Average concentration of styrene brtadiene rubber was about five times that of natural rubber. Annual average concentrations of Pb and Zn were $1.2 \mu g/m^3 and 0.4 \mu g/m^3$ respectively, which corresponded to about 0.7% and 0.2% of the annual average total suspended particulates.

  • PDF

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds

  • Kim, Donghyuk;Ahn, Byungkyu;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.152-163
    • /
    • 2021
  • Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.