• Title/Summary/Keyword: Trapping characteristics

Search Result 217, Processing Time 0.026 seconds

Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays (Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진)

  • Kim, Sujung;Cho, Yunae;Sohn, Ahrum;Kim, Dong-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.64-67
    • /
    • 2016
  • We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

4H-SiC Planar MESFET for Microwave Power Device Applications

  • Na, Hoon-Joo;Jung, Sang-Yong;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Song, Ho-Keun;Lee, Jae-Bin;Kim, Hyeong-Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.113-119
    • /
    • 2005
  • 4H-SiC planar MESFETs were fabricated using ion-implantation on semi-insulating substrate without recess gate etching. A modified RCA method was used to clean the substrate before each procedure. A thin, thermal oxide layer was grown to passivate the surface and then a thick field oxide was deposited by CVD. The fabricated MESFET showed good contact properties and DC/RF performances. The maximum oscillation frequency of 34 GHz and the cut-off frequency of 9.3 GHz were obtained. The power gain was 10.1 dB and the output power of 1.4 W was obtained for 1 mm-gate length device at 2 GHz. The fabricated MESFETs showed the charge trapping-free characteristics and were characterized by the extracted small-signal equivalent circuit parameters.

Reliability Characteristics of La-doped High-k/Metal Gate nMOSFETs

  • Kang, C.Y.;Choi, R.;Lee, B.H.;Jammy, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.166-173
    • /
    • 2009
  • The reliability of hafnium oxide gate dielectrics incorporating lanthanum (La) is investigated. nMOSFETs with metal/La-doped high-k dielectric stack show lower $V_{th}$ and $I_{gate}$, which is attributed to the dipole formation at the high-k/$SiO_2$ interface. The reliability results well correlate with the dipole model. Due to lower trapping efficiency, the La-doping of the high-k gate stacks can provide better PBTI immunity, as well as lower charge trapping compared to the control HfSiO stacks. While the devices with La show better immunity to positive bias temperature instability (PBTI) under normal operating conditions, the threshold voltage shift (${\Delta}V_{th}$) at high field PBTI is significant. The results of a transconductance shift (${\Delta}G_m$) that traps are easily generated during high field stress because the La weakens atomic bonding in the interface layer.

An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (2) - Sediment Distribution and Reduction Method in Reservoir (저수지 장기운영을 위한 퇴적토사의 효율적 관리(2) - 저수지 퇴사분포 및 저감방안)

  • Ahn, Jae Hyun;Jang, Su Hyung;Choi, Won Suk;Yoon, Yong Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1094-1100
    • /
    • 2006
  • In this study, the reservoir sediment reduction methods for long-term operation are proposed by the analysis of both sediment deposit characteristics and sediment reduction effect by each method. To that end, a flowchart for sediment analysis in reservoir is established and sediment deposit is simulated by SMS-SED2D model. The sediment reduction methods which are sediment passing (sluicing), flushing, trapping, bypassing and mechanical removal are used. From the simulation results, the effective method for sediment reduction is operation which is coupled by both sediment passing with sand gate and sediment trapping with debris dam. And If sediment flushing will be used once a year after 50 years, conservation storage can be secured until 100 years after dam construction.

Fabrication and Device Performance of Tera Bit Level Nano-scaled SONOS Flash Memories (테라비트급 나노 스케일 SONOS 플래시 메모리 제작 및 소자 특성 평가)

  • Kim, Joo-Yeon;Kim, Moon-Kyung;Kim, Byung-Cheul;Kim, Jung-Woo;Seo, Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1017-1021
    • /
    • 2007
  • To implement tera bit level non-volatile memories of low power and fast operation, proving statistical reproductivity and satisfying reliabilities at the nano-scale are a key challenge. We fabricate the charge trapping nano scaled SONOS unit memories and 64 bit flash arrays and evaluate reliability and performance of them. In case of the dielectric stack thickness of 4.5 /9.3 /6.5 nm with the channel width and length of 34 nm and 31nm respectively, the device has about 3.5 V threshold voltage shift with write voltage of $10\;{\mu}s$, 15 V and erase voltage of 10 ms, -15 V. And retention and endurance characteristics are above 10 years and $10^5$ cycle, respectively. The device with LDD(Lightly Doped Drain) process shows reduction of short channel effect and GIDL(Gate Induced Drain Leakage) current. Moreover we investigate three different types of flash memory arrays.

The Characteristics of Thermoluminescence from $^{137}$ Cs Irradiated Beta-Eucryptite ($^{137}$ Cs으로 조사된 베타-유크립타이트의 열자극발광 특성)

  • 김태규;이병용;박영우;추성실;황정남
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.23-31
    • /
    • 1992
  • The thermally stimulated luminecence (Thermoluminescence:TL) of manufactured beta-eucryptite was studied for dose range of 200cGy-20000Gy. The TL spectrum from cesium irradiated beta-eucryptite was measured over the temperature range of 300K to 600K. The linearity of TL intensity vs irradiation dose is valid up to 50Gy and beyond higher dose supralinearity and saturation come out. At the dose of 2000Gy, the net number of supralinearity is maximum. The net amount of supralinearity form newly formed trapping center by photon irradiation and totally calculated TL intensity are accord with the experimental results except for the 50Gy range that supralinearity appears.

  • PDF

The oxidation of silicon nitride layer (실리콘 질화막의 산화)

  • 정양희;이영선;박영걸
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.231-235
    • /
    • 1994
  • The multi-dielectric layer $SiO_2$/$Si_3{N_4}$/$SiO_2$ (ONO) is used to improve charge retention and to scale down the memory device. The nitride layer of MNOS device is oxidize to form ONO system. During the oxidation of the nitride layer, the change of thickness of nitride layer and generation of interface state between nitride layer and top oxide layer occur. In this paper, effects of oxidation of the nitride layer is studied. The decreases of the nitride layer due to oxidation and trapping characteristics of interface state of multi layer dielectric film are investigated through the C-V measurement and F-N tunneling injection experiment using SONOS capacitor structure. Based on the experimental results, carrier trapping model for maximum flatband voltage shift of multi layer dielectric film is proposed and compared with experimental data. As a results of curve fitting, interface trap density between the top oxide and layer is determined as being $5{\times}10^11$~$2{\times}10^12$[$eV^1$$cm^2$].

  • PDF

Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model (전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석)

  • Song, Yu-min;Jeong, Junkyo;Sung, Jaeyoung;Lee, Ga-won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.134-137
    • /
    • 2019
  • In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.