• 제목/요약/키워드: Transverse Load Test

검색결과 171건 처리시간 0.026초

피로실험에 의한 콘크리트 포장체 경사가로줄눈부의 하중전달율에 관한 연구 (A Study on Load Transfer Efficiency of Skewed Transverse Joint of Concrete Pavement by the Fatigue Test)

  • 황승의;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.203-211
    • /
    • 2001
  • This paper presents load transfer efficiency of skewed transverse joint of jointed concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometry, loading, material similitude, which are variables to the skew angel of transverse joint. As the test results by fatigue load 700kgf applied, the deflection and stress of transverse joint were decreased as to increasing of skew angle of transverse joint. In addition, load transfer efficiency of transverse joint with skew angle is better than the load transfer efficiency of transverse joint without skew angle.

  • PDF

줄눈콘크리트 포장 가로줄눈부의 피로수명 (The Fatigue Life of Transverse Joint of Concrete Pavement)

  • 황승의;송준호;고영주;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.199-206
    • /
    • 2003
  • This paper presents the fatigue life of transverse joint of concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometric load, material similitude, which are variables to the skew angel of transverse joint. From the test results by fatigue load 700kgf applied, we can have that the fatigue life of transverse joint with skew angle is better than that of transverse joint without skew angle. In addition, we can have that the fatigue life of skewed transverse joint with angle of 10 degree is better than that of skewed transverse joint with angle of 20 degree.

강거더교의 재하시험을 통한 내하력평가 (Rating of A Plate Girder Bridge through Load Test)

  • 전귀현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권1호
    • /
    • pp.89-97
    • /
    • 1998
  • This paper presents the results of the load test performed on a steel plate girder bridge and suggests the procedure of bridge rating through the load test. In general the girder bridge resist the loads as a complex three-dimensional structural system. Therefore the test results are analyzed for the longitudinal and the transverse response characteristics. The bending moments based on the beam analysis are compared with the measured values for longitudinal response characteristics. The lateral load distribution characteristics are assessed based on the load test results for transverse response characteristics. Also the rating of the test bridge is performed by using the suggested rating procedure which considers the actual response characteristics of the bridge. The suggested procedure can be used for understanding of actual response characteristics and evaluating load carrying capacity of the steel plate girder bridge.

  • PDF

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • 제7권1호
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Seismic performance of RC short columns with light transverse reinforcement

  • Tran, Cao Thanh Ngoc;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.93-104
    • /
    • 2018
  • The seismic behavior of reinforced concrete (RC) short columns with limited transverse reinforcement is investigated in this paper through an experimental program. The experimental program consists of four small-scale RC columns with an aspect ratio of 1.7, which are tested to the axial failure stage. The cracking patterns, hysteretic responses, strains in reinforcing bars, displacement decomposition and cumulative energy dissipation of the tested specimens are reported in detail in the paper. The effects of column axial load are investigated to determine how this variable might influence the performance of the short columns with limited transverse reinforcement. Brittle shear failure was observed in all tested specimens. Beneficial and detrimental effects on the shear strength and drift ratio at axial failure of the test specimens due to the column axial load are found in the experimental program, respectively.

반복 인장 하중을 받는 YP47 극후판 Butt 용접부의 잔류응력 재분포에 관한 연구 (A Study on Evaluation of Residual Stress Redistribution for FCA Butt Weldment of Ultra-Thick YP47 Steel Plate under Tensile Cyclic Load)

  • 강봉국;이동주;신상범
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.28-33
    • /
    • 2016
  • The purpose of this study is to evaluate the redistribution of transverse residual stress in the multi-pass FCA butt weld of YP47 in the hatch coaming top plate of ultra large size containership under the tensile cyclic load. In order to do it, the configuration of modified H type specimen including restraint length was first designed to simulate the restraint condition of the butt weld in hatch coaming top plate. FE analysis procedure for evaluating the transverse residual stress was verified by comparing the calculated mean and surface residual stresses with the measured results in the test specimen. After that, the effect of the cyclic load on the redistribution of transverse residual stress was evaluated by comprehensive FEA. From the results, it was found that although the maximum transverse residual stress decreased with an increase in the applied maximum load, the effect of the cyclic load on the mean residual stress is small enough to be negligible. It is because the maximum stress of the ship corresponding to the probability of 10E-8 is less than 70% of yield stress of the weld.

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

벽식 구조체 적용을 위한 구조용단열패널 성능 평가 (Evaluation on Structural Performance of Structural Insulated Panels in Wall Application)

  • 나환선;이현주;이철희;황성욱;조혜진;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.

Structural Behavior of Cement Concrete Pavement at Transverse Joint Using Model Test

  • Ko, Young-Zoo;Kim, Kyung-Soo;Bae, Ju-Seong
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.23-30
    • /
    • 2000
  • This paper presents behavior of concrete pavement at transverse joint subject to static test load. The test was conducted on 1/10 scale model in the laboratory. Load transfer across the crack is developed either by the interlocking action of the aggregate particles at the faces of the joint or by a combination of aggregate interlock and mechanical devices such as dowel bars. In this study, significant three variables considered to the performance of joints were selected. : (a)diameter of dowel bars(2.5mm, 3.0mm, 4.0mm), (b)presence or absence of dowel bars, (c)aggregate types(crushed stone, round stone). Experimental results were analyzed to find relationships among displacement of discontinuous plane at jointed slab, load transfer efficiency and joint opening, etc. Displacement of discontinuous plane at joint was decreased according to the increase of dowel bar diameter. In addition, it is found that model slabs made using crushed stone had better load transfer characteristics by aggregate interlock than model slabs made using similarly graded round stone. Displacement of discontinuous plane was increased according to the increase of loading. In addition, it was decreased as dowel diameter(2.5mm, 3.0mm, 4.0mm) was increased. In the case of slab without dowel bars, displacement of discontinuous plane was greatly increased and load transfer effciency of slab applied crushed stone was shown 30 percent greater than round stone. In addition, load transfer efficiency of slabs, which were made using crushed and round stone without dowel bars, was decreased to 20 percent and 30 percent, respectively as it was compared with slabs made us-ing dowel bars.

  • PDF

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.