• Title/Summary/Keyword: Transport temperature

Search Result 1,504, Processing Time 0.028 seconds

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

Numerical analysis of NOx formation characteristics in CH$_{4}$-air jet diffusion flame (CH$_{4}$-공기 분류 확산화염의 NOx 생성특성에 관한 수치해석)

  • O, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.193-204
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymmetric 2-D CH$_{4}$ jet diffusion flame. Calculations were carried out twice with the $C_{2}$-Thermal Mechanism including $C_{2}$ and thermal NO reactions and the $C_{2}$-Full Mechanism including prompt NO reactions in addition to the above $C_{2}$-Thermal NO mechanism. The results show that the flame structures such as flame temperature, major and minor species concentration are indifferent to respective mechanisms. The production path of Thermal NO is dominant comparing with that of Prompt NO in total NO production of pure CH$_{4}$ jet diffusion flame. This is because thermal NO mechanism mainly contributes to positive formation of NO in the whole flame region, but Prompt NO mechanism contributes to negative formation in the fuel rich region. In addition, 0$_{2}$ penetration near the nozzle outlet affects the flame structures, especially N0$_{2}$ formation characteristics.

Analysis on Particle Deposition on a Heated Rotating Disk (가열되는 회전원판으로의 입자 침착 해석)

  • Yu, Gyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

SMOKE SPREAD IN A CORRIDOR

  • Kim, Myung-Bae;Han, Yong-Shik;Park, Jun-Seok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.464-471
    • /
    • 1997
  • Convective smoke spread in a corridor is experimentally investigated using thermocouples and visualization technique with a laser beam sheet. The speed of smoke front under a ceiling is measured by a series of thermocouples. Visualization of the ceiling jet formation and of smoke filling process is carried out to observe the lowering of a smoke layer. From the results, a large-scale convective motion plays dominant roles for smoke spread in the vicinity of the end of the corridor from visualized photos along with temperature records. The large-scale convective motion of the smoke is generated from the impingement of the ceiling jet front on the end of the corridor, and thus turning the flows toward the floor. Such a circulating motion of fluid transports some smoke to some region where its momentum is effective. It is therefore shown that the conventional concept of lowering smoke in the two-layer zone model has some restrictions for the corridor because the lowering of smoke layer has been thought to be mass transport due to relatively small scale motions such as the decrease of buoyancy, mass diffusion and momentum exchanges.

  • PDF

Implement of Intelligent Head-Up Display for Vehicle (차량용 지능형 Head-Up Display의 적용 실험)

  • Son, Hui-Bae;Ban, Hyeong-Jin;Yang, Kwun;Rhee, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.400-405
    • /
    • 2010
  • This paper deals with implementation of intelligent head up display for vehicle safety system. The Implanted new intelligent transport system offer the potential for improved vehicle to driver communication. The most commonly viewed information in a vehicle is from the Head up display, where speed, tachometer, engine RPM, navigation, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to head up display system. Finally, In this paper, we analyze intelligent head up display system for vehicle of driver safety.

The study of electron drift velocity in $CF_4+Ar$ molecular gas mixture by 2-term and multi-term approximation of the Boltzmann equation (다항근사 및 2항근사 볼츠만 방정식을 이용한 $CF_4+Ar$ 혼합기체의 전자이동속도 연구)

  • Song, Byoung-Doo;Ha, Sung-Chul;Jeon, Byoung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1179-1182
    • /
    • 2004
  • This paper describes the information for quantitative simulation of weakly ionized plasma. In previous paper, we calculated the electron transport coefficients in $CF_4+Ar$ gas mixture by using two-term approximation of Boltzmann equation. but there is difference between the result of the two-term and the multi-term approximation of the Boltzmann equation in $CF_4$ gas. Therefore, in this paper, we calculated the electron drift velocity (W) in $CF_4+Ar$ gas mixture for range of E/N values from $0.01\sim500[Td}$ at the temperature was 300[K] and pressure was 1[Torr] by multi-term approximation of the Boltzmann equation by Robson and Ness. The results of two-term and multi-term approximation of the Boltzmann equation has been compared with each other for a range of E/N.

  • PDF

A Study for the Viscous Flow of Sodium Chloride Through a Cuprophane Membrane

  • Jee Jong-Gi;Kwun Oh Cheun;Jhon Mu Shik;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • For the study of transport phenomena of an aqueous NaCl solution through a cuprophane membrane, a new apparatus was constructed. The volumc flow rate Q, the permeability coefficient U, and the permeability constant K were measured or determined by using this apparatus. The experimental temperature range was 5 to $35^{\circ}C$, and the applied pressure increments were 10 to 40 psi. By assuming that the cuprophane membrane is composed of n parallel cylindrical capillaries of circular cross-section and that the flow of the solution through the capillaries follows the Poiseulle law, the mean radius r of the capillaries and the number n of the latter in the membrane were evaluated. By using a reasonable assumption concerning the radius ${\eta}'$ of the species diffusing through the membrane, it was concluded that the contribution of the diffusive flow to the total flow rate Q is less than 10%. Thus, the Q was treated as the rate due to the viscous flow, and the viscosity ${\eta}_m$ of the solution in the membrane phase was evaluted, and it was found that ηm is nearly equal to ${\eta}_b$, the bulk viscosity of the solution. From this fact, it was concluded that in the capillaries, no change occurs in the physical state of the NaCl solution. The value of ( = 4.27 kcal/mole) and ${\Delta}Sm^{\neq}$(4.28 eu) were obtained for the viscous flow. A possible explanation was given.

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

A Study on Photoreceptor by Using the Effect of Additives

  • Yu, Jin;Kim, Yeong Sun;Yu, Guk Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.709-715
    • /
    • 2001
  • We have been studied photosensitization mechanism's additive effect, of perylene 3,4,9,10-tetracarboxyl-diimide and X-phthalocyanine (charge generation materials), using the photochemical and photoelectrochemical approach. It was found that the photoreceptor on the excited state reacts with metal oxide, which creates the charge transfer on the interface of SnO2/electrolyte. In the electrode (X5P1) made of five X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, the cathodic photocurrent of X-phthalocyanine in the 400-600 nm region was increased by the addition of perylene 3,4,9,10-tetracarboxyldiimide. The maximum wavelength of fluorescence of perylene 3,4,9,10-tetracarboxyldiimide showed no dependence on the temperature. The addition of 4-dibenzylamino-2-methylbenzaldehyde diphenylhydrazone known as charge transport material was represented as decreasing photocurrent for X-phthalocyanine and perylene 3,4,9,10-tetracarboxyldiimide, respectively. In the electrode (X1P1) made of single X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, an anodic photocurrent of about 10.5 nA was generated by addition of hydroquinone at 550 nm. And the characteristic of photoinduced discharge was shown to decrease by a factor of 5 and the speed of dark decay was increased by a factor of 1.2.

Improvement of Soot Probe Efficiency for Automotive Emission Measurement (자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구)

  • Chae, Il-Seok;Kim, Sang-Yu;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.