• Title/Summary/Keyword: Transparent conducting oxide (TCO)

Search Result 142, Processing Time 0.028 seconds

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review (고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰)

  • Park, Hyeongsik;Kim, Youngkuk;Oh, Donghyun;Pham, Duy Phong;Song, Jaechun;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

Electrical Properties of the Transparent Conducting Oxide Layers of Al-doped ZnO and WO3 Prepared by rf Sputtering Process

  • Gang, Dong-Su;Kim, Hui-Seong;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.316-316
    • /
    • 2014
  • Two different transparent conducting oxide (TCO) layers of Al-doped ZnO (AZO) and $WO_3$ were prepared by a rf sputtering process. Working pressure, deposition time, and target-to-substrate distance were varied for the sputtering process to improve electrical properties of the resulting layer. Thickness of the TCO layers was measured by a profile meter of ${\alpha}$-step. To evaluate the electrical conductivity, surface resistivity of the TCO layers was measured by a four-point probe technique. Decrease of the working pressure resulted in increase of deposition rate and decrease of surface resistivity of the resulting layer. Increase of the layer thickness due to increased deposition time resulted in decrease of surface resistivity of the resulting layer. The shorter the target-to-substrate distance was, the lower was the surface resistivity of the resulting layer.

  • PDF

The Characterization of Spin Coated ZnO TCO on the Flexible Substrates (Spin-coating을 이용하여 Flexible Film에 제작된 ZnO TCO의 특성 분석)

  • Jun, Min-Chul;Lee, Ku-Tak;Park, Sang-Uk;Lee, Kyung-Ju;Moon, Byung-Moo;Cho, Won-Ju;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.290-293
    • /
    • 2012
  • This article introduces the characterization of spin coated ZnO transparent conducting oxide on the flexible substrates. As a II-IV compound semiconductor, ZnO has a wide band gap of 3.37 eV with transparent properties. Due to this transparent properties, ZnO materials can be also employed as the transparent conducting electrode materials. Therefore, strong demands have been required for the transparent electrodes with low temperature processing and cheap cost. So, We will investigate the electrical property and optical transmittance of ZnO transparent conducting oxide through the 4-point probe resistivity meter, and ultraviolet-vis spectrometer Lamda 35, respectively.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:AI / ITO TCO layers (ZnO:Al 과 ITO 투명전도막을 이용한 플랙시블 타입 DSCs변환효율 특성)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Kim, Tae-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.177-179
    • /
    • 2009
  • In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode, ZnO:Al films were prepared by RF magnetron sputtering method. The effects of surface treatment and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the transparent conducting oxide electrode were measured and compared with each other. By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a chemical surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. And DBD surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. Although the luminance and luminous efficiency of the transparent conducting oxide electrode using ZnO:AI are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of TCO.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates (폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구)

  • Koo, Hong-Mo;Kim, Se-Hyun;Park, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

Si Based Photoelectric Device with ITO/AZO Double Layer (ITO/AZO 투명전극을 이용한 Si 기반의 광전소자)

  • Jang, Hee-Joon;Yoon, Han-Joon;Lee, Gyeong-Nam;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • In this study, functional transparent conducting layers were investigated for Si-based photoelectric applications. Double transparent conductive oxide (TCO) films were deposited on a Si substrate in the sequence of indium tin oxide (ITO) followed by aluminum-doped zinc oxide (AZO). First, we observed that the conductivity and transparency of AZO dominate the overall performance of the double TCO layers. Secondly, the double layered TCO film (consisting of AZO/ITO) deposited by sputtering was compared to a AZO-only film in terms of their optical and electrical properties. We prepared three different AZO films: ITO:3min/AZO:10min, ITO:5min/AZO:7min, and ITO:7min/AZO:4min. The results show that the optical properties (transmittance, absorbance, and reflection) can be controlled by the film composition. This may provide a significant pathway for the manipulation of the optical and electrical properties of photoelectric devices.