DOI QR코드

DOI QR Code

Si Based Photoelectric Device with ITO/AZO Double Layer

ITO/AZO 투명전극을 이용한 Si 기반의 광전소자

  • Jang, Hee-Joon (Department of Electrical Engineering, Incheon National University) ;
  • Yoon, Han-Joon (Department of Electrical Engineering, Incheon National University) ;
  • Lee, Gyeong-Nam (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.12.11
  • Accepted : 2018.01.12
  • Published : 2018.02.01

Abstract

In this study, functional transparent conducting layers were investigated for Si-based photoelectric applications. Double transparent conductive oxide (TCO) films were deposited on a Si substrate in the sequence of indium tin oxide (ITO) followed by aluminum-doped zinc oxide (AZO). First, we observed that the conductivity and transparency of AZO dominate the overall performance of the double TCO layers. Secondly, the double layered TCO film (consisting of AZO/ITO) deposited by sputtering was compared to a AZO-only film in terms of their optical and electrical properties. We prepared three different AZO films: ITO:3min/AZO:10min, ITO:5min/AZO:7min, and ITO:7min/AZO:4min. The results show that the optical properties (transmittance, absorbance, and reflection) can be controlled by the film composition. This may provide a significant pathway for the manipulation of the optical and electrical properties of photoelectric devices.

Keywords

References

  1. Y. J. Jo, J. K. Kim, S. C. Han, J. S. Kwak, and J. M. Lee, Korean J. Met. Mater., 47, 44 (2009).
  2. M. H Chung, S. Kim, D. Yoo, and J. H. Kim, Appl. Chem. Eng., 25, 242 (2014). [DOI: https://doi.org/10.14478/ace.2014.1013]
  3. H. C. Chae and J. W. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 367 (2007). [DOI: https://doi.org/10.4313/JKEM.2007.20.4.367]
  4. T. H. Lin, M. S. Lin, and C. S. Yoo, Proc. 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference (IEEE, Santa Clara, USA, 1991) p. 417. [DOI: https://doi.org/10.1109/vmic.1991.153043]
  5. A. E. Yarimbiyik, D. I. Oksuz, and E. Cesur, Proc. 2016 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM) (IEEE, Smolenice, Slovakia, 2016). p. 211. [DOI: https://doi.org/10.1109/asdam.2016.7805932]
  6. Y. H. Song, T. Y. Eom, S. B. Heo, and D. Kim, J. Kor. Soc. Heat Treat., 30, 151 (2017). [DOI: https://doi.org/10.12656/jksht.2017.30.4.151]
  7. T. Oh, J. Korean Vac. Soc., 21, 212 (2012). [DOI: https://doi.org/10.5757/JKVS.2012.21.4.212]
  8. P. P. Manik, R. K. Mishra, U. Ganguly, and S. Lodha, Proc. 72nd Device Research Conference (IEEE, Santa Barbara, USA, 2014). p. 117. [DOI: https://doi.org/10.1109/drc.2014.6872325]
  9. K. Znajdek, M. Sibinski, M. Jakubowska, M. Sloma, M. Gorski, and K. Tadaszak, Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, Tampa, USA, 2013). p. 2501.
  10. A. V. Makhin, I. K. Meshkovskiy, and S. A. Plyastsov, IEEE Sens. J., 17, 5880 (2017). [DOI: https://doi.org/10.1109/JSEN.2017.2734278]
  11. D. Lai, Y. H. Tan, and C. S. Tan, Proc. 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Seattle, USA, 2011). p. 003022.
  12. J. Nam and S. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 401 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.6.401]
  13. S. Y. Lee and G. E. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 7 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.1.7]