• 제목/요약/키워드: Transmission power allocation

검색결과 231건 처리시간 0.029초

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Sum Transmission Rate Maximization Based Cooperative Spectrum Sharing with Both Primary and Secondary QoS-Guarantee

  • Lu, Weidang;Zhu, Yufei;Wang, Mengyun;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2015-2028
    • /
    • 2016
  • In this paper, we propose a sum transmission rate maximization based cooperative spectrum sharing protocol with quality-of-service (QoS) support for both of the primary and secondary systems, which exploits the situation when the primary system experiences a weak channel. The secondary transmitter STb which provides the best performance for the primary and secondary systems is selected to forward the primary signal. Specifically, STb helps the primary system achieve the target rate by using a fraction of its power to forward the primary signal. As a reward, it can gain spectrum access by using the remaining power to transmit its own signal. We study the secondary user selection and optimal power allocation such that the sum transmission rate of primary and secondary systems is maximized, while the QoS of both primary and secondary systems can be guaranteed. Simulation results demonstrate the efficiency of the proposed spectrum sharing protocol and its benefit to both primary and secondary systems.

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

셀룰러 네트워크에서 D2D 통신을 고려한 에너지 효율성 분석 (Analysis of Energy Efficiency Considering Device-to-Device (D2D) Communications in Cellular Networks)

  • 정민채;최수용
    • 한국통신학회논문지
    • /
    • 제38A권7호
    • /
    • pp.571-579
    • /
    • 2013
  • 본 논문은 셀룰러 네트워크에서 D2D (device-to-device) 통신을 고려한 시스템의 에너지 효율적인 모드 선택 기법 (mode selection) 및 파워 할당 기법 (power allocation)을 제안한다. 본 논문에서는 각 단말(device)의 에너지 효율성의 합 측면에서 에너지 효율성 (energy efficiency)을 분석한다. 먼저, 각 단말의 모든 가능한 모드에 대해 에너지 효율을 최대화하는 전송 파워를 계산한다. 제안하는 파워 할당 기법은 시스템 용량 측면에서 최적은 아니지만, 에너지 효율성 측면에서 최적의 성능을 보인다. 제안하는 전송 파워 할당 기법을 기반으로, 모든 가능한 모드에 대해 에너지 효율성을 구한다. 다음 단계로, 모든 가능한 모드 중에서 최대의 에너지 효율성을 갖는 모드를 구하며 동시에 해당 모드의 할당 전송 파워를 도출할 수 있다. 제안 기법은 에너지 효율성 측면에서 최적의 성능을 보이며, 기존 기법에 비해 월등한 성능을 보인다.

확률 선형 계획법에 의한 최적 Var 배분 계획에 관한 연구 (Optimal Var Allocation in system planning by stochastic Linear Programming)

  • 송길영;이희영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.863-865
    • /
    • 1988
  • This paper presents a optimal Var allocation algorithm for minimizing transmission line losses and improving voltage profile in a given system. In this paper, nodal input data is considered as Gaussian distribution with their mean value and their variance. A Stocastic Linear programming technique based on chance constrained method is applied, to solve the var allocation problem with probabilistic constraint. The test result in 6-Bus Model system showes that the voltage distribution of load buses is improved and the power loss is more reduced than before var allocation.

  • PDF

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.

A GTS Scheduling Algorithm for Voice Communication over IEEE 802.15.4 Multihop Sensor Networks

  • Kovi, Aduayom-Ahego;Bleza, Takouda;Joe, Inwhee
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.34-38
    • /
    • 2012
  • The recent increase in use of the IEEE 802.15.4 standard for wireless connectivity in personal area networks makes of it an important technology for low-cost low-power wireless personal area networks. Studies showed that voice communications over IEEE 802.15.4 networks is feasible by Guaranteed Time Slot (GTS) allocation; but there are some constraints to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks with the goal of achieving fairness and optimization of resource allocation. The proposed scheme uses a greedy algorithm to allocate GTSs to devices for successful completion of voice transmission with efficient use of bandwidth while considering closest devices with another factor for starvation avoidance. We analyze and validate the proposed scheme in terms of fairness and resource optimization through numeral analysis.

Resource allocation algorithm for space-based LEO satellite network based on satellite association

  • Baochao Liu;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1638-1658
    • /
    • 2024
  • As a crucial development direction for the sixth generation of mobile communication networks (6G), Low Earth Orbit (LEO) satellite networks exhibit characteristics such as low latency, seamless coverage, and high bandwidth. However, the frequent changes in the topology of LEO satellite networks complicate communication between satellites, and satellite power resources are limited. To fully utilize resources on satellites, it is essential to determine the association between satellites before power allocation. To effectively address the satellite association problem in LEO satellite networks, this paper proposes a satellite association-based resource allocation algorithm. The algorithm comprehensively considers the throughput of the satellite network and the fairness associated with satellite correlation. It formulates an objective function with logarithmic utility by taking the logarithm and summing the satellite channel capacities. This aims to maximize the sum of logarithmic utility while promoting the selection of fewer associated satellites for forwarding satellites, thereby enhancing the fairness of satellite association. The problems of satellite association and power allocation are solved under constraints on resources and transmission rates, maximizing the logarithmic utility function. The paper employs an improved Kuhn-Munkres (KM) algorithm to solve the satellite association problem and determine the correlation between satellites. Based on the satellite association results, the paper uses the Lagrangian dual method to solve the power allocation problem. Simulation results demonstrate that the proposed algorithm enhances the fairness of satellite association, optimizes resource utilization, and effectively improves the throughput of LEO satellite networks.

A Genetic Approach to Transmission Rate and Power Control for Cellular Mobile Network (ICEIC'04)

  • Lee YoungDae;Park SangBong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.10-14
    • /
    • 2004
  • When providing flexible data transmission for future CDMA(Code Division Multiple Access) cellular networks, problems arise in two aspects: transmission rate. This paper has proposed an approach to maximize the cellular network capacity by combining the genetic transmission rate allocation and a rapid power control algorithm. We present a genetic chromosome representation to express call drop numbers and transmission rate to control mobile's transmission power levels while handling their flexible transmission rates. We suggest a rapid power control algorithm, which is based on optimal control theory and Steffenson acceleration technique comparing with the existing algorithms. Computer simulation results showed effectiveness and efficiency of the proposed algorithm Conclusively, our proposed scheme showed high potential for increasing the cellular network capacity and it can be the fundamental basis of future research.

  • PDF