• Title/Summary/Keyword: Transmission Throughput

Search Result 884, Processing Time 0.023 seconds

Aggressive Subchannel Allocation Algorithm for Optimize Transmission Efficiency Among Users in Multiuser OFDMA System (다중 사용자 OFDMA 시스템에서의 사용자간 전송효율 최적화를 위한 Aggressive Subchannel Allocation 알고리즘)

  • Ko Sang-Jun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.617-626
    • /
    • 2006
  • In this paper, we propose an ASA(Aggressive Subchannel Allocation) algorithm, which is an effective dynamic channel allocation algorithm considering all user's channel state to maximize downlink sector throughput in OFDMA system. We compare an ASA algorithm with Round Robin, ACG(Amplitude Craving Greedy), RCG(Rate Craving Greedy) and GPF(General Proportional Fair) in the 2-tier environment of FRF(Frequency Reuse Factor) 1 and then analyze the performance of each algorithms, through compute simulation. Simulation results show that the proposed ASA algorithm gets 58 %, 190 %, 130 % and 8.5 % better sector throughput compared with the Round Robin, ACG, RCG and GPF respectively.

Random Access Channel with Retransmission Gain

  • Shi, Junmin;Sun, Yi;Zhang, Xiaochen;Xiao, Jizhong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.148-159
    • /
    • 2013
  • An analysis of the throughput and stability region of random access systems is currently of interest in research and industry. This study evaluated the performance of a multiuser random access channel with a retransmission gain. The channel was composed of a media access control (MAC) determined by the transmission probabilities and a multiuser communication channel characterized by the packet reception probabilities as functions of the number of packet transmissions and the collision status. The analysis began with an illustrative two-user channel, and was extended to a general multiuser channel. For the two-user channel, a sufficient condition was derived, under which the maximum throughput was achieved with a control-free MAC. For the channel with retransmission gain, the maximum steady throughput was obtained in a closed form. The condition under which the random access channel can acquire retransmission gain was also obtained. The stability region of the general random access channel was derived. These results include those of the well-known orthogonal channel, collision channel and slotted Aloha channel with packet reception as a special instance. The analytical and numerical results showed that exploiting the retransmission gain can increase the throughput significantly and expand the stability region of the random access channel. The analytical results predicted the performance in the simulations quite well.

  • PDF

Research on The SWIPT System Throughput Based on Interference Signal Energy Collecting

  • Jianxiong Li;Hailong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2170-2187
    • /
    • 2023
  • The general interference is the imperative trouble for simultaneous wireless information and power transfer (SWIPT) system. Although interference has bad influences on the performance of the system, it carries energy simultaneously. In this paper, the energy-constrained relay of the SWIPT system needs to spend much time on energy collecting (EC) in the information transmission (IT) period. Therefore, we propose the scheme of interference signal energy collecting (ISEC) when the interference is strong, and the SWIPT system does not carry out IT. The relay of the system continues to collect energy and stores it until the interference has minimal impact on IT. Then the system performs IT. We divide the collected interference energy equally into several parts, and each IT block receives one part. The proposed scheme is appealing because it can reduce the time of EC in IT period to make the relay spends more time forwarding the received signal in order to improve the performance of the system throughput. Furthermore, we propose a time-switching (TS) protocol based on EC at the relay. And it allows the relay forwarding signal at an appropriate power. Under the protocol, the time of EC can be flexible according to the forwarding power that we give so that the collected energy can be used more efficiently. We give the expressions of the system throughput according to the proposed scheme and protocol. Moreover, the influence of the interference power on the system throughput is also studied.

Dynamic Packet Transmission Probability Control Scheme in CDMA S_ALOHA Systems (CDMA S_ALOHA 시스템에서 동적 패킷 전송 확률 제어 기법)

  • 임인택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.485-492
    • /
    • 2003
  • This paper proposes a transmission probability control scheme for guaranteeing fair packet transmissions in CDMA slotted ALOHA system. In CDMA slotted ALOHA system, the packets transmitted in the same slot act as multiple access interference, so that unsuccessful packet transmissions are caused entirely by multiple access interference. Therefore, in order to maximize the system throughput, the number of simultaneously transmitted packets should be kept at a proper level. In the proposed scheme, the base station calculates the packet transmission probability of mobile stations in the next slot according to the offered load and then broadcasts this probability to all the mobile stations. Mobile stations, which have a packet to transmit, attempt to transmit packet with the received probability. Simulation results show that the proposed scheme can offer better system throughput and average delay than the conventional scheme, and guarantee a good fairness among all mobile stations regardless of the offered load.

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks

  • Zhao, Yan;Shi, Wenxiao;Shi, Hanyang;Liu, Wei;Wu, Pengxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.325-335
    • /
    • 2017
  • Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.

Analysis of MIMD Backoff Algorithm for IEEE 802.11 DCF (IEEE 802.11 DCF를 위한 MIMD 백오프 알고리즘 분석)

  • Lim, Seog-Ku
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.299-307
    • /
    • 2011
  • The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF and PCF. The DCF controls the transmission based on CSMA/CA The BEB backoff algorithm of DCF shows relatively excellent performance in situation that the number of competing station is less, but has a problem that performance of throughput and delay is degraded in situation that the number of competing station is increased. This paper mathematically analyzes an MIMD backoff algorithm considering retry limit that increases the CW to doubled after collision and decreases smoothly the CW to halves after successful transmission in order to reduce the collision probability. To prove efficiency of the MIMD backoff algorithm, lots of simulations are conducted and analyzed.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Power Allocation for Half-duplex Relay-based D2D Communication with QoS guarantee

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1311-1324
    • /
    • 2019
  • In the traditional cellular network communication, the cellular user and the base station exchange information through the uplink channel and downlink channel. Meanwhile, device-to-device (D2D) users access the cellular network by reusing the channel resources of the cellular users. However, when cellular user channel conditions are poor, not only D2D user cannot reuse its channel resources to access the network, but also cellular user's communication needs cannot be met. To solve this problem, we introduced a novelty D2D communication mechanism in the downlink, which D2D transmitter users as half-duplex (HD) relays to assist the downlink transmission of cellular users with reusing corresponding spectrum. The optimization goal of the system is to make the cellular users in the bad channel state meet the minimum transmission rate requirement and at the same time maximize the throughput of the D2D users. In addition, i for the purpose of improving the efficiency of relay transmission, we use two-antenna architecture of D2D relay to enable receive and transmit signals at the same time. Then we optimized power of base station and D2D relay separately with consideration of backhaul interference caused by two-antenna architectures. The simulation results show that the proposed HD relay strategyis superior to existing HD and full-duplex (FD) models in the aspects of system throughput and power efficiency.

The Performance Analysis of TRC Dropper to improve fairness on DiffServ Networks (DiffServ 네트워크에서 공평성 향상을 위한 TRC Dropper의 성능 분석)

  • Kim, Hoon-Ki;Hong, Sung-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.91-102
    • /
    • 2009
  • The average window size is most closely related to average throughput. In order to improve fairness, the proposed dropper tries to control the window size of each flow to equal level by intentional packet drop. Intentional packet drop is performed only to the flows that have been occupied bandwidth in a large amount. Because of intentional packet drop, this flow cut down its transmission rate to a half. Accordingly, somewhat capacity of core link comes into existence. And other flow can use this new capacity of this link. Hence other flows have more throughput than before. In this paper, we propose the TRC (Transmission Rate Control) Dropper improving the fairness between individual flows of aggregated sources on DiffServ network. It has the fairness improvement mechanism mentioned above paragraph.

A Steady State Analysis of TCP Rate Control Mechanism on Packet loss Environment (전송 에러를 고려한 TCP 트래픽 폭주제어 해석)

  • Kim, Dong-Whee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • In this Paper, Analyse the Steady State Behavior of TCP and TFRC with Packet Error when both TCP and TFRC Flows Co-exist in the Network. First, Model the Network with TCP and TFRC Connections as a Discrete Time System. Second, Calculate Average Round Trip Time of the Packet Between Source and Destination on Packet Loss Environment. Then Derive the Steady State Performance i.e. Throughput of TCP and TFRC, and Average Buffer Size of RED Router Based on the Analytic Network Model. The Throughput of TCP and TFRC Connection Decrease Rapidly with the Growth of Sending Window Size and Their Transmission Rate but Their Declines become Smoothly when the Number of Sending Window Arrives on Threshold Value. The Average Queue Length of RED Router Increases Slowly on Low Transmission Rate but Increases Rapidly on High Transmission Rate.