• Title/Summary/Keyword: Transmission Scheduling

Search Result 355, Processing Time 0.023 seconds

Bluetooth Scatternet Formation And Management Algorithm For Reducing Hop Count In WPAN (WPAN에서 통신 노드간 홉 수를 줄이기 위한 블루투스 스캐터넷 형성 및 관리 알고리즘)

  • Lee, Jung-Woo;Han, Jae-Sung;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.57-64
    • /
    • 2005
  • A Piconet consists of Master device and several Slave devices. Master and Slave devices are transmitted using TDD (Time Duplex Oivision) in a Piconet. A Scattemet constructed by several Piconets communicates by a Piconet. Bluetooth Specification defines the meaning of a Scatternet. But the formation and scheduling method is not defined. For the efficient formation of a Scatternet, the preceding research proposes a tree-shape topology Scatternet. But this research passes over the characteristic of Bluetooth transmission carried out by a Piconet in the Scattemet. So this Paper proposes a efficient throughput tree formation Scatternet algorithm To improve the throughput of a Scatternet, this paper proposes a tree tolopology that guarantees the efficient throughput of a Piconet

Iub Congestion Detection Method for WCDMA HSUPA Network to Improve User Throughput (WCDMA HSUPA 망의 성능 향상을 위한 Iub 혼잡 검출 방법)

  • Ahn, Ku-Ree;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.16-24
    • /
    • 2010
  • High Speed Uplink Packet Access(HSUPA) is a WCDMA Release 6 technology which corresponds to High Speed Downlink Packet Access(HSDPA). Node B Supports fast scheduling, Hybrid ARQ(HARQ), short Transmission Time Interval(TTI) for high rate uplink packet data. It is very important to detect Iub congestion to improve end user's Quality of Service(QoS). This paper proposes Node B Congestion Detection(BCD) mechanism and suggests to use the hybrid of Transport Network Layer(TNL) congestion detection and BCD. It is shown that HSUPA user throughput performance can be improved by the proposed method even with small Iub bandwidth.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Interrelation Based Resource Allocation Scheme for Mobile Multimedia Networks (이동 멀티미디어 망을 위한 상호관계기반 자원 할당 방법)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.79-87
    • /
    • 2010
  • It is widely accepted that the coverage with high user densities in mobile multimedia environments can only be achieved with small cell such as micro- and pico-cell. If handover events occur during the transmission of multimedia, the efficient resource reservation and handover methods are necessary in order to maintain the same QoS of transmitted multimedia traffic because the QoS may be defected by some delay and information loss. In this paper, we propose a resource allocation method in the next generation mobile communication systems, in which the resource allocation process has a tight relation with call admission, call load, and packet scheduling. The simulation results show that our proposed method provides a excellent performance.

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

OFPT: OpenFlow based Parallel Transport in Datacenters

  • Liu, Bo;XU, Bo;Hu, Chao;Hu, Hui;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4787-4807
    • /
    • 2016
  • Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT) and ECMP which are widely used currently neither achieve high bandwidth utilization nor have good load balancing. Due to only one available transmission path, SPT cannot make full use of all available bandwidth, while ECMP's random hashing results in many collisions. In this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which integrates precise routing and scheduling for better load balancing and higher network throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the optimal path and bandwidth provision for each flow according to the global network view. To guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on Mininet and implement it in a real testbed. The experimental results show that the average network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and achieves better scalability.

Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay Networks

  • Sha, Yan;Hu, Jufeng;Hao, Shuang;Wang, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3008-3028
    • /
    • 2022
  • In this paper, we investigate traffic scheduling for a delay-sensitive multi-hop relay network, and aim to minimize the priority-based end-to-end delay of different data packet via joint relay selection, subcarrier assignment, and power allocation. We first derive the priority-based end-to-end delay based on queueing theory, and then propose a two-step method to decompose the original optimization problem into two sub-problems. For the joint subcarrier assignment and power control problem, we utilize an efficient particle swarm optimization method to solve it. For the relay selection problem, we prove its convexity and use the standard Lagrange method to deal with it. The joint relay selection, subcarriers assignment and transmission power allocation problem for each hop can also be solved by an exhaustive search over a finite set defined by the relay sensor set and available subcarrier set. Simulation results show that both the proposed routing scheme and the resource allocation scheme can reduce the average end-to-end delay.

Distributed memory access architecture and control for fully disaggregated datacenter network

  • Kyeong-Eun Han;Ji Wook Youn;Jongtae Song;Dae-Ub Kim;Joon Ki Lee
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1020-1033
    • /
    • 2022
  • In this paper, we propose novel disaggregated memory module (dMM) architecture and memory access control schemes to solve the collision and contention problems of memory disaggregation, reducing the average memory access time to less than 1 ㎲. In the schemes, the distributed scheduler in each dMM determines the order of memory read/write access based on delay-sensitive priority requests in the disaggregated memory access frame (dMAF). We used the memory-intensive first (MIF) algorithm and priority-based MIF (p-MIF) algorithm that prioritize delay-sensitive and/or memory-intensive (MI) traffic over CPU-intensive (CI) traffic. We evaluated the performance of the proposed schemes through simulation using OPNET and hardware implementation. Our results showed that when the offered load was below 0.7 and the payload of dMAF was 256 bytes, the average round trip time (RTT) was the lowest, ~0.676 ㎲. The dMM scheduling algorithms, MIF and p-MIF, achieved delay less than 1 ㎲ for all MI traffic with less than 10% of transmission overhead.

Performance Analysis of the Gated Service Scheduling for Ethernet PON (Ethernet PON을 위한 Gated Service 스케줄링의 성능분석)

  • 신지혜;이재용;김병철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.31-40
    • /
    • 2004
  • In this paper, we analyze mathematically the performance of the gated service scheduling in the Interleaved Polling with Adaptive Cycle Time(IPACT) was proposed to control upstream traffic for Gigabit Ethernet-PONs. In the analysis, we model EPON MAC protocol as a polling system and use mean value analysis. We divide arrival rate λ into three regions and analyze each region accordingly In the first region in which λ value is very small, there are very few ONUs' data to be transmitted. In the second region in which λ has reasonably large value, ONUs have enough data for continuous transmission. In the third region, ONUs' buffers are always saturated with data since λ value is very large. We obtain average packet delay, average Queue size, average cycle time of the gated service. We compare analysis results with simulation to verify the accuracy of the mathematical analysis. Simulation requires much time and effort to evaluate the performance of EPONs. On the other hand, mathematical analysis can be widely used in the design of EPON systems because system designers can obtain various performance results rapidly. We can design appropriate EPON systems for varioustraffic property by adjusting control parameters.