• Title/Summary/Keyword: Transmission Loss Coefficient

Search Result 114, Processing Time 0.027 seconds

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

A Study of Adiabatic Performance for Vacuum Glazing with Design Conditions (진공유리의 설계 조건에 따른 단열 성능 연구)

  • Hwang, Il-Sun;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.582-587
    • /
    • 2012
  • Recently, the low-emissivity glass has been used to reduce the energy loss through building windows. However, it simply reduces the inflow of solar rays and has a relatively high heat transmission coefficient. To solve the problems, a high-efficiency vacuum glazing has been under development but it has not been actively used due to its high price and insufficient performance. In this paper, the effects of internal pressure, pillar (spacer) height, pillar diameter, pillar interval, emissivity etc. on the performance of vacuum glazing have been analyzed with three-dimensional computational fluid dynamics and structural analysis. As a result, the performance of vacuum glazing was predicted more accurately and major factors that determine the performance of vacuum glazing were optimized.

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.492-497
    • /
    • 2002
  • In this paper, Power Flow Analysis(PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. For validations computations are performed to analyze the response of coupled shells by changing the excitation frequency and damping loss factor.

  • PDF

The microphone system of the cellular phone for privately telephonic communication (속삭임 통화를 위한 휴대 전화용 마이크로폰 시스템)

  • 최성준;문원규;이정현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1335-1340
    • /
    • 2001
  • The information technology brought us many kinds of conveniences to our life, but it also caused social problems such as privacy interference, unexpected personal information leaks, and nose generation by telephonic talks, etc. In this paper, the microphone system of the cellular phone is developed to prevent these problems caused by progress of information technology. The developed system was designed to detect only acoustic signals from a human being in the presence of various kinds of background noises. A windscreen was designed by use of micro-channels to eliminate the popping noise by the wind from the mouth of a speaker and four microphone array and signal processing techniques are applied to reduce background noise. The impact of the developed system was evaluated by experimental tests. The results show that the system can improve the required functions considerably.

  • PDF

On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1700-1711
    • /
    • 2004
  • Piston friction is one of the important but complicated sources of energy loss of a hydraulic axial piston machine. In this paper, two formulas are derived for estimating instantaneous piston friction force and average piston friction moment loss. The derived formula can be applicable for piston guides with or without bushing as well as for axial piston machines of motoring and pumping operations. Through the formula derivation, a typical curve shape of friction force found from several experimental measurements during one revolution of a machine is clearly explained in this paper that it is mainly due to the equivalent friction coefficient dependent on its angular position. Stribeck curve effect can easily be incorporated into the formula by replacing outer and inner friction coefficients at both edges of a piston with the coefficient given by Manring (1999) considering mixed/boundary lubrication effects. Novel feature of the derived formula is that it is represented only by physical dimensions of a machine, hence it allows to estimate the piston friction force and loss moment of a machine without hardworking experimental test.

A SEA Modeling of a compact car and Interior Noise Analysis (소형 승용차량의 SEA 모델링 및 내부 소음 연구)

  • Kim, Sang-Su;Kim, Kwan-Ju;Lim, Hyo-Suk;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.824-828
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict middle, high frequency air borne interior noise. PIM method is used for verification. Damping loss factor and coupling loss factor have been derived from the response(SPL) of sub systems when the power is applied. The airborne SEA model of vehicle is modeled through AutoSea2. Insulation material's absorption coefficient and transmission loss are acquired from closed form solution and experiment.

  • PDF

Analysis of the Sound Insertion Loss of the Enclosure for the Chilled Water Plant in a Ship (선박의 냉수제조기용 인클로우져에 대한 음향 삽입 손실 분석)

  • Han, Hyung-Suk;Jang, Cheon-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.152-157
    • /
    • 2008
  • Enclosure is widely used for the sound insulation in a ship. But it is very difficult to estimate the sound insertion loss for the enclosure because the sound field between the enclosure and the machine is so complex. Therefore, it is usually estimated experimentally. In this research, sound insertion loss of the enclosure is estimated by theory assuming that the sound field in the enclosure is reverberation field. And the results from the theory are compared to those from the experiment.

  • PDF

Effect of Energy Loss by a Vertical Slotted Wall (직립 슬릿벽에 의한 에너지 손실효과)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.295-303
    • /
    • 2015
  • The eigenfunction expansion method is appled for the wave scattering by a vertical slotted, where both the inertial and quadratic drag terms are involved. Quadratic drag term representing the energy loss is linearized by the application of socalled equivalent linearization. The drag coefficient, which was empirically determined by Yoon et al.(2006) and Huang(2007) is used. Analytical results are verified by comparison to the experimental results conducted by Kwon et al.(2014) and Zhu and Chwang(2001). Using the developed design tool, the effect of energy loss by a vertical slotted wall is estimated with various design parameters, such as porosity, submergence depth, shape of slits and wave characteristics. It is found that the maximum value of energy loss across the slotted wall is generated at porosity value less than P = 0.1. The present solutions can provide a good predictive tools to estimate the wave absorbing efficiency by a slotted-wall breakwater.

Transmission Characteristics on Dimensional Tolerances of Millimeter-Wave Rectangular Waveguides (밀리미터파용 구형 도파관의 단면 치수 변화에 의한 전송 특성)

  • Park, Kyung-Sik;Kim, Ki-Chai;Kang, Jin-Seob;Kim, Jeong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.722-729
    • /
    • 2013
  • This paper presents the influence on the transmission characteristics of dimensional tolerances of rectangular waveguides usually used as a low-loss transmission line in the millimeter-wave band. We derived the Green's functions of the waveguide with eigenfunction expansion method. The reflection coefficient of the waveguide with a post is calculated by using internal impedance in order to investigate the influence of dimensional tolerances of the waveguide. In order to check the validity of the theoretical analysis, the calculated reflection coefficients are compared with the measured results.

Performance prediction and measurement of the barrier (합성수지 방음벽의 성능예측 및 평가)

  • 박진규;김관주;정환익;김상헌;최상석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.718-723
    • /
    • 2004
  • The insertion loss of a noise barrier comes from the effects of diffraction, transmission loss, absorption coefficient and attenuation by direct propagation. The noise level after the noise barrier, differs reatly from the diffraction on the upper part of the barrier. Maekawa, furze and Anderson presented a empirical formula for calculating the diffraction of a semi infinte screen shaped noise barrier. In this syudy, Noise reduction performance software was developed for the proper design and assessment of new plastic barrier . Predicted sound pressure level from using the software is compared with the site-measurement results to verify the noise reduction performance and feasibility of prediction software for insertion loss of noise barrier.

  • PDF